Immune network behavior—II. From oscillations to chaos and stationary states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1993-07

AUTHORS

Rob J. De Boer, Alan S. Perelson, Ioannis G. Kevrekidis

ABSTRACT

Two types of behavior have been previously reported in models of immune networks. The typical behavior of simple models, which involve B cells only, is stationary behavior involving several steady states. Finite amplitude perturbations may cause the model to switch between different equilibria. The typical behavior of more realistic models, which involve both B cells and antibody, consists of autonomous oscillations and/or chaos. While stationary behavior leads to easy interpretations in terms of idiotypic memory, oscillatory behavior seems to be in better agreement with experimental data obtained in unimmunized animals. Here we study a series of models of the idiotypic interaction between two B cell clones. The models differ with respect to the incorporation of antibodies, B cell maturation and compartmentalization. The most complicated model in the series has two realistic parameter regimes in which the behavior is respectively stationary and chaotic. The stability of the equilibrium states and the structure and interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be factors influencing the model's behavior. Whether or not the model is able to attain any form of sustained oscillatory behavior, i.e. limit cycles or chaos, seems to be determined by (global) bifurcations involving the stable and unstable manifolds of the equilibrium states. We attempt to determine whether such behavior should be expected to be attained from reasonable initial conditions by incorporating an immune response to an antigen in the model. A comparison of the behavior of the model with experimental data from the literature provides suggestions for the parameter regime in which the immune system is operating. More... »

PAGES

781-816

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02460673

DOI

http://dx.doi.org/10.1007/bf02460673

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040077929

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8318930


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibody Formation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "B-Lymphocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oscillometry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, NM, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, NM, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perelson", 
        "givenName": "Alan S.", 
        "id": "sg:person.01335541022.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335541022.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Princeton University, 08544, Princeton, NJ, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemical Engineering, Princeton University, 08544, Princeton, NJ, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kevrekidis", 
        "givenName": "Ioannis G.", 
        "id": "sg:person.0643763310.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643763310.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/s0092-8240(89)80083-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614987", 
          "https://doi.org/10.1016/s0092-8240(89)80083-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024709281", 
          "https://doi.org/10.1007/bf01197757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017644408", 
          "https://doi.org/10.1007/bf02460115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001691997", 
          "https://doi.org/10.1007/bf02458444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(05)80080-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054613621", 
          "https://doi.org/10.1016/s0092-8240(05)80080-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001840838", 
          "https://doi.org/10.1007/bf02458618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/228784a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000237770", 
          "https://doi.org/10.1038/228784a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238413a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049160071", 
          "https://doi.org/10.1038/238413a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034931480", 
          "https://doi.org/10.1007/bf02460672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015937934", 
          "https://doi.org/10.1007/bf02459638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014082776", 
          "https://doi.org/10.1007/bf02458443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(05)80188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054613693", 
          "https://doi.org/10.1016/s0092-8240(05)80188-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-07", 
    "datePublishedReg": "1993-07-01", 
    "description": "Two types of behavior have been previously reported in models of immune networks. The typical behavior of simple models, which involve B cells only, is stationary behavior involving several steady states. Finite amplitude perturbations may cause the model to switch between different equilibria. The typical behavior of more realistic models, which involve both B cells and antibody, consists of autonomous oscillations and/or chaos. While stationary behavior leads to easy interpretations in terms of idiotypic memory, oscillatory behavior seems to be in better agreement with experimental data obtained in unimmunized animals. Here we study a series of models of the idiotypic interaction between two B cell clones. The models differ with respect to the incorporation of antibodies, B cell maturation and compartmentalization. The most complicated model in the series has two realistic parameter regimes in which the behavior is respectively stationary and chaotic. The stability of the equilibrium states and the structure and interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be factors influencing the model's behavior. Whether or not the model is able to attain any form of sustained oscillatory behavior, i.e. limit cycles or chaos, seems to be determined by (global) bifurcations involving the stable and unstable manifolds of the equilibrium states. We attempt to determine whether such behavior should be expected to be attained from reasonable initial conditions by incorporating an immune response to an antigen in the model. A comparison of the behavior of the model with experimental data from the literature provides suggestions for the parameter regime in which the immune system is operating.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02460673", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2633874", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2564417", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2451758", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "unstable manifolds", 
      "parameter regimes", 
      "stationary behavior", 
      "finite-amplitude perturbations", 
      "equilibrium state", 
      "oscillatory behavior", 
      "saddle-type equilibrium", 
      "realistic parameter regimes", 
      "reasonable initial conditions", 
      "complicated models", 
      "stationary state", 
      "limit cycles", 
      "initial conditions", 
      "amplitude perturbations", 
      "experimental data", 
      "sustained oscillatory behavior", 
      "typical behavior", 
      "chaos", 
      "realistic model", 
      "manifold", 
      "simple model", 
      "model behavior", 
      "autonomous oscillations", 
      "steady state", 
      "series of models", 
      "easy interpretation", 
      "oscillations", 
      "good agreement", 
      "different equilibria", 
      "model", 
      "bifurcation", 
      "equilibrium", 
      "idiotypic interactions", 
      "regime", 
      "perturbations", 
      "type of behavior", 
      "immune network", 
      "state", 
      "behavior", 
      "such behavior", 
      "network", 
      "terms", 
      "agreement", 
      "stability", 
      "system", 
      "respect", 
      "structure", 
      "data", 
      "series", 
      "interaction", 
      "form", 
      "interpretation", 
      "conditions", 
      "comparison", 
      "types", 
      "literature", 
      "memory", 
      "incorporation", 
      "cycle", 
      "response", 
      "suggestions", 
      "factors", 
      "cells", 
      "immune system", 
      "compartmentalization", 
      "B cells", 
      "B cell clones", 
      "B cell maturation", 
      "unimmunized animals", 
      "cell clones", 
      "cell maturation", 
      "immune response", 
      "antibodies", 
      "incorporation of antibodies", 
      "animals", 
      "antigen", 
      "maturation", 
      "clones"
    ], 
    "name": "Immune network behavior\u2014II. From oscillations to chaos and stationary states", 
    "pagination": "781-816", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040077929"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02460673"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8318930"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02460673", 
      "https://app.dimensions.ai/details/publication/pub.1040077929"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_235.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02460673"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02460673'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02460673'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02460673'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02460673'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      124 URIs      104 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02460673 schema:about N525ecf5f949f4ee2ac767315820498ed
2 N5c8015db6c1d47199a81acdc8f865b4b
3 N6d73a94c031f481bba59f14c35357b0e
4 N9450866c6a9d46b5b9311e83583336ba
5 Nc3f888905b3b40f19081dc40adfd5b45
6 Ndba44940e8f54637bf4fe76ebe7f8cbf
7 Ned5213f6dd714ba78154cfa1e1e39d23
8 Neda9118e7f814be491bcb1babbe4f06d
9 anzsrc-for:01
10 anzsrc-for:06
11 schema:author N7b418b1fd9d54a88b04b6b1a5dc68091
12 schema:citation sg:pub.10.1007/bf01197757
13 sg:pub.10.1007/bf02458443
14 sg:pub.10.1007/bf02458444
15 sg:pub.10.1007/bf02458618
16 sg:pub.10.1007/bf02459638
17 sg:pub.10.1007/bf02460115
18 sg:pub.10.1007/bf02460672
19 sg:pub.10.1016/s0092-8240(05)80080-1
20 sg:pub.10.1016/s0092-8240(05)80188-0
21 sg:pub.10.1016/s0092-8240(89)80083-7
22 sg:pub.10.1038/228784a0
23 sg:pub.10.1038/238413a0
24 schema:datePublished 1993-07
25 schema:datePublishedReg 1993-07-01
26 schema:description Two types of behavior have been previously reported in models of immune networks. The typical behavior of simple models, which involve B cells only, is stationary behavior involving several steady states. Finite amplitude perturbations may cause the model to switch between different equilibria. The typical behavior of more realistic models, which involve both B cells and antibody, consists of autonomous oscillations and/or chaos. While stationary behavior leads to easy interpretations in terms of idiotypic memory, oscillatory behavior seems to be in better agreement with experimental data obtained in unimmunized animals. Here we study a series of models of the idiotypic interaction between two B cell clones. The models differ with respect to the incorporation of antibodies, B cell maturation and compartmentalization. The most complicated model in the series has two realistic parameter regimes in which the behavior is respectively stationary and chaotic. The stability of the equilibrium states and the structure and interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be factors influencing the model's behavior. Whether or not the model is able to attain any form of sustained oscillatory behavior, i.e. limit cycles or chaos, seems to be determined by (global) bifurcations involving the stable and unstable manifolds of the equilibrium states. We attempt to determine whether such behavior should be expected to be attained from reasonable initial conditions by incorporating an immune response to an antigen in the model. A comparison of the behavior of the model with experimental data from the literature provides suggestions for the parameter regime in which the immune system is operating.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N7a987e0eeb644ade826f537195e42206
30 Nb86aabf283bc4a3e9d320a8b9a3e6bfd
31 sg:journal.1018370
32 schema:keywords B cell clones
33 B cell maturation
34 B cells
35 agreement
36 amplitude perturbations
37 animals
38 antibodies
39 antigen
40 autonomous oscillations
41 behavior
42 bifurcation
43 cell clones
44 cell maturation
45 cells
46 chaos
47 clones
48 comparison
49 compartmentalization
50 complicated models
51 conditions
52 cycle
53 data
54 different equilibria
55 easy interpretation
56 equilibrium
57 equilibrium state
58 experimental data
59 factors
60 finite-amplitude perturbations
61 form
62 good agreement
63 idiotypic interactions
64 immune network
65 immune response
66 immune system
67 incorporation
68 incorporation of antibodies
69 initial conditions
70 interaction
71 interpretation
72 limit cycles
73 literature
74 manifold
75 maturation
76 memory
77 model
78 model behavior
79 network
80 oscillations
81 oscillatory behavior
82 parameter regimes
83 perturbations
84 realistic model
85 realistic parameter regimes
86 reasonable initial conditions
87 regime
88 respect
89 response
90 saddle-type equilibrium
91 series
92 series of models
93 simple model
94 stability
95 state
96 stationary behavior
97 stationary state
98 steady state
99 structure
100 such behavior
101 suggestions
102 sustained oscillatory behavior
103 system
104 terms
105 type of behavior
106 types
107 typical behavior
108 unimmunized animals
109 unstable manifolds
110 schema:name Immune network behavior—II. From oscillations to chaos and stationary states
111 schema:pagination 781-816
112 schema:productId N3107e095e1af4fefb5d9065ee199f127
113 N8d67807a9ccf43188d4d2b90bda231b0
114 Ne28d22c5ac76495f90ddc293256886ca
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040077929
116 https://doi.org/10.1007/bf02460673
117 schema:sdDatePublished 2022-11-24T20:47
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N955c16a26d164fe8abd903812ada8993
120 schema:url https://doi.org/10.1007/bf02460673
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N0d28bdd3fed74b6caf042e6df40c43f0 rdf:first sg:person.0643763310.36
125 rdf:rest rdf:nil
126 N3107e095e1af4fefb5d9065ee199f127 schema:name pubmed_id
127 schema:value 8318930
128 rdf:type schema:PropertyValue
129 N525ecf5f949f4ee2ac767315820498ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name B-Lymphocytes
131 rdf:type schema:DefinedTerm
132 N5c8015db6c1d47199a81acdc8f865b4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Oscillometry
134 rdf:type schema:DefinedTerm
135 N636d8d60fffd41d99258ea6bcb6236ac rdf:first sg:person.01335541022.50
136 rdf:rest N0d28bdd3fed74b6caf042e6df40c43f0
137 N6d73a94c031f481bba59f14c35357b0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Animals
139 rdf:type schema:DefinedTerm
140 N7a987e0eeb644ade826f537195e42206 schema:volumeNumber 55
141 rdf:type schema:PublicationVolume
142 N7b418b1fd9d54a88b04b6b1a5dc68091 rdf:first sg:person.0774503452.97
143 rdf:rest N636d8d60fffd41d99258ea6bcb6236ac
144 N8d67807a9ccf43188d4d2b90bda231b0 schema:name doi
145 schema:value 10.1007/bf02460673
146 rdf:type schema:PropertyValue
147 N9450866c6a9d46b5b9311e83583336ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 N955c16a26d164fe8abd903812ada8993 schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Nb86aabf283bc4a3e9d320a8b9a3e6bfd schema:issueNumber 4
153 rdf:type schema:PublicationIssue
154 Nc3f888905b3b40f19081dc40adfd5b45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Models, Biological
156 rdf:type schema:DefinedTerm
157 Ndba44940e8f54637bf4fe76ebe7f8cbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Mathematics
159 rdf:type schema:DefinedTerm
160 Ne28d22c5ac76495f90ddc293256886ca schema:name dimensions_id
161 schema:value pub.1040077929
162 rdf:type schema:PropertyValue
163 Ned5213f6dd714ba78154cfa1e1e39d23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Antibody Formation
165 rdf:type schema:DefinedTerm
166 Neda9118e7f814be491bcb1babbe4f06d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Antibodies
168 rdf:type schema:DefinedTerm
169 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
170 schema:name Mathematical Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
173 schema:name Biological Sciences
174 rdf:type schema:DefinedTerm
175 sg:grant.2451758 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02460673
176 rdf:type schema:MonetaryGrant
177 sg:grant.2564417 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02460673
178 rdf:type schema:MonetaryGrant
179 sg:grant.2633874 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02460673
180 rdf:type schema:MonetaryGrant
181 sg:journal.1018370 schema:issn 0092-8240
182 1522-9602
183 schema:name Bulletin of Mathematical Biology
184 schema:publisher Springer Nature
185 rdf:type schema:Periodical
186 sg:person.01335541022.50 schema:affiliation grid-institutes:grid.148313.c
187 schema:familyName Perelson
188 schema:givenName Alan S.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335541022.50
190 rdf:type schema:Person
191 sg:person.0643763310.36 schema:affiliation grid-institutes:grid.16750.35
192 schema:familyName Kevrekidis
193 schema:givenName Ioannis G.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643763310.36
195 rdf:type schema:Person
196 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
197 schema:familyName De Boer
198 schema:givenName Rob J.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
200 rdf:type schema:Person
201 sg:pub.10.1007/bf01197757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024709281
202 https://doi.org/10.1007/bf01197757
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/bf02458443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014082776
205 https://doi.org/10.1007/bf02458443
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/bf02458444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001691997
208 https://doi.org/10.1007/bf02458444
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/bf02458618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840838
211 https://doi.org/10.1007/bf02458618
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/bf02459638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015937934
214 https://doi.org/10.1007/bf02459638
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/bf02460115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017644408
217 https://doi.org/10.1007/bf02460115
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/bf02460672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034931480
220 https://doi.org/10.1007/bf02460672
221 rdf:type schema:CreativeWork
222 sg:pub.10.1016/s0092-8240(05)80080-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054613621
223 https://doi.org/10.1016/s0092-8240(05)80080-1
224 rdf:type schema:CreativeWork
225 sg:pub.10.1016/s0092-8240(05)80188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054613693
226 https://doi.org/10.1016/s0092-8240(05)80188-0
227 rdf:type schema:CreativeWork
228 sg:pub.10.1016/s0092-8240(89)80083-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614987
229 https://doi.org/10.1016/s0092-8240(89)80083-7
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/228784a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000237770
232 https://doi.org/10.1038/228784a0
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/238413a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049160071
235 https://doi.org/10.1038/238413a0
236 rdf:type schema:CreativeWork
237 grid-institutes:grid.148313.c schema:alternateName Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, NM, U.S.A.
238 schema:name Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, NM, U.S.A.
239 rdf:type schema:Organization
240 grid-institutes:grid.16750.35 schema:alternateName Department of Chemical Engineering, Princeton University, 08544, Princeton, NJ, U.S.A.
241 schema:name Department of Chemical Engineering, Princeton University, 08544, Princeton, NJ, U.S.A.
242 rdf:type schema:Organization
243 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
244 schema:name Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...