Memory but no suppression in low-dimensional symmetric idiotypic networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1989-03

AUTHORS

Rob J. De Boer, Pauline Hogeweg

ABSTRACT

We present a new symmetric model of the idiotypic immune network. The model specifies clones of B-lymphocytes and incorporates: (1) influx and decay of cells; (2) symmetric stimulatory and inhibitory idiotypic interactions; (3) an explicit affinity parameter (matrix); (4) external (i.e. non-idiotypic) antigens. Suppression is the dominant interaction, i.e. strong idiotypic interactions are always suppressive. This precludes reciprocal stimulation of large clones and thus infinite proliferation. Idiotypic interactions first evoke proliferation, this enlarges the clones, and may in turn evoke suppression. We investigate the effect of idiotypic interactions on normal proliferative immune responses to antigens (e.g. viruses).A 2-D, i.e. two clone, network has a maximum of three stable equilibria: the virgin state and two asymmetric immune states. The immune states only exist if the affinity of the idiotypic interaction is high enough. Stimulation with antigen leads to a switch from the virgin state to the corresponding immune state. The network therefore remembers antigens, i.e. it accounts for immunity/memory by switching beteen multiple stable states. 3-D systems have, depending on the affinities, 9 qualitatively different states. Most of these also account for memory by state switching.Our idiotypic network however fails to account for the control of proliferation, e.g. suppression of excessive proliferation. In symmetric networks, the proliferating clones suppress their anti-idiotypic suppressors long before the latter can suppress the former. The absence of proliferation control violates the general assumption that idiotypic interactions play an important role in immune regulation. We therefore test the robustness of these results by abandoning our assumption that proliferation occurs before suppression. We thus define an “escape from suppression” model, i.e. in the “virgin” state idiotypic interactions are now suppressive. This system erratically accounts for memory and never for suppression. We conclude that our “absence of suppression from idiotypic interactions” does not hinge upon our “proliferation before suppression” assumption. More... »

PAGES

223-246

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02458444

DOI

http://dx.doi.org/10.1007/bf02458444

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001691997

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2924020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immune Tolerance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoglobulin Idiotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunologic Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogeweg", 
        "givenName": "Pauline", 
        "id": "sg:person.014656171554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014656171554.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02458443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014082776", 
          "https://doi.org/10.1007/bf02458443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02237954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774498", 
          "https://doi.org/10.1007/bf02237954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-93130-7_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020302158", 
          "https://doi.org/10.1007/978-3-642-93130-7_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-3701-0_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014960402", 
          "https://doi.org/10.1007/978-1-4684-3701-0_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-4739-2_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048043927", 
          "https://doi.org/10.1007/978-1-4684-4739-2_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/316412a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052615478", 
          "https://doi.org/10.1038/316412a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(89)80069-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614973", 
          "https://doi.org/10.1016/s0092-8240(89)80069-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017644408", 
          "https://doi.org/10.1007/bf02460115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-03", 
    "datePublishedReg": "1989-03-01", 
    "description": "We present a new symmetric model of the idiotypic immune network. The model specifies clones of B-lymphocytes and incorporates: (1) influx and decay of cells; (2) symmetric stimulatory and inhibitory idiotypic interactions; (3) an explicit affinity parameter (matrix); (4) external (i.e. non-idiotypic) antigens. Suppression is the dominant interaction, i.e. strong idiotypic interactions are always suppressive. This precludes reciprocal stimulation of large clones and thus infinite proliferation. Idiotypic interactions first evoke proliferation, this enlarges the clones, and may in turn evoke suppression. We investigate the effect of idiotypic interactions on normal proliferative immune responses to antigens (e.g. viruses).A 2-D, i.e. two clone, network has a maximum of three stable equilibria: the virgin state and two asymmetric immune states. The immune states only exist if the affinity of the idiotypic interaction is high enough. Stimulation with antigen leads to a switch from the virgin state to the corresponding immune state. The network therefore remembers antigens, i.e. it accounts for immunity/memory by switching beteen multiple stable states. 3-D systems have, depending on the affinities, 9 qualitatively different states. Most of these also account for memory by state switching.Our idiotypic network however fails to account for the control of proliferation, e.g. suppression of excessive proliferation. In symmetric networks, the proliferating clones suppress their anti-idiotypic suppressors long before the latter can suppress the former. The absence of proliferation control violates the general assumption that idiotypic interactions play an important role in immune regulation. We therefore test the robustness of these results by abandoning our assumption that proliferation occurs before suppression. We thus define an \u201cescape from suppression\u201d model, i.e. in the \u201cvirgin\u201d state idiotypic interactions are now suppressive. This system erratically accounts for memory and never for suppression. We conclude that our \u201cabsence of suppression from idiotypic interactions\u201d does not hinge upon our \u201cproliferation before suppression\u201d assumption.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02458444", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "immune state", 
      "idiotypic interactions", 
      "memory", 
      "proliferative immune responses", 
      "idiotypic network", 
      "B lymphocytes", 
      "immune response", 
      "immune regulation", 
      "absence of suppression", 
      "external antigens", 
      "antigen", 
      "excessive proliferation", 
      "proliferation", 
      "control of proliferation", 
      "reciprocal stimulation", 
      "stimulation", 
      "infinite proliferation", 
      "immune network", 
      "suppression", 
      "clones", 
      "stimulatory", 
      "interaction", 
      "control", 
      "absence", 
      "proliferation control", 
      "assumption", 
      "important role", 
      "network", 
      "influx", 
      "cells", 
      "large clones", 
      "suppressor", 
      "general assumptions", 
      "model", 
      "response", 
      "affinity", 
      "effect", 
      "state", 
      "different states", 
      "role", 
      "regulation", 
      "affinity parameters", 
      "escape", 
      "results", 
      "incorporates", 
      "system", 
      "switching", 
      "virgin", 
      "stable state", 
      "state switching", 
      "idiotypic immune network", 
      "parameters", 
      "maximum", 
      "switch", 
      "robustness", 
      "virgin state", 
      "multiple stable states", 
      "decay", 
      "stable equilibrium", 
      "new symmetric model", 
      "symmetric model", 
      "equilibrium", 
      "symmetric networks", 
      "dominant interaction"
    ], 
    "name": "Memory but no suppression in low-dimensional symmetric idiotypic networks", 
    "pagination": "223-246", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001691997"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02458444"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2924020"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02458444", 
      "https://app.dimensions.ai/details/publication/pub.1001691997"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_198.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02458444"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02458444'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02458444'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02458444'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02458444'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      104 URIs      88 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02458444 schema:about N16f8716acfdb4d90aad1c4b97ee9c519
2 N754beda0e27343c3bdd165d241655336
3 N8e718e75f5bb4996b9d70817623d1825
4 Nba264ea9903041c5a49c9c03455785f5
5 Nd6206bab00c04c4bb1ef3911564885aa
6 Nfddd1ff204c141e6b570130509dd21f7
7 anzsrc-for:01
8 anzsrc-for:06
9 schema:author Naadf5f841bb5407786c754387caec254
10 schema:citation sg:pub.10.1007/978-1-4684-3701-0_6
11 sg:pub.10.1007/978-1-4684-4739-2_16
12 sg:pub.10.1007/978-3-642-93130-7_20
13 sg:pub.10.1007/bf02237954
14 sg:pub.10.1007/bf02458443
15 sg:pub.10.1007/bf02460115
16 sg:pub.10.1016/s0092-8240(89)80069-2
17 sg:pub.10.1038/316412a0
18 schema:datePublished 1989-03
19 schema:datePublishedReg 1989-03-01
20 schema:description We present a new symmetric model of the idiotypic immune network. The model specifies clones of B-lymphocytes and incorporates: (1) influx and decay of cells; (2) symmetric stimulatory and inhibitory idiotypic interactions; (3) an explicit affinity parameter (matrix); (4) external (i.e. non-idiotypic) antigens. Suppression is the dominant interaction, i.e. strong idiotypic interactions are always suppressive. This precludes reciprocal stimulation of large clones and thus infinite proliferation. Idiotypic interactions first evoke proliferation, this enlarges the clones, and may in turn evoke suppression. We investigate the effect of idiotypic interactions on normal proliferative immune responses to antigens (e.g. viruses).A 2-D, i.e. two clone, network has a maximum of three stable equilibria: the virgin state and two asymmetric immune states. The immune states only exist if the affinity of the idiotypic interaction is high enough. Stimulation with antigen leads to a switch from the virgin state to the corresponding immune state. The network therefore remembers antigens, i.e. it accounts for immunity/memory by switching beteen multiple stable states. 3-D systems have, depending on the affinities, 9 qualitatively different states. Most of these also account for memory by state switching.Our idiotypic network however fails to account for the control of proliferation, e.g. suppression of excessive proliferation. In symmetric networks, the proliferating clones suppress their anti-idiotypic suppressors long before the latter can suppress the former. The absence of proliferation control violates the general assumption that idiotypic interactions play an important role in immune regulation. We therefore test the robustness of these results by abandoning our assumption that proliferation occurs before suppression. We thus define an “escape from suppression” model, i.e. in the “virgin” state idiotypic interactions are now suppressive. This system erratically accounts for memory and never for suppression. We conclude that our “absence of suppression from idiotypic interactions” does not hinge upon our “proliferation before suppression” assumption.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N6e625d19858146cba4fb3f7e5eae5dd8
24 Nf9b8178454f64b7281b30ceddb1a0519
25 sg:journal.1018370
26 schema:keywords B lymphocytes
27 absence
28 absence of suppression
29 affinity
30 affinity parameters
31 antigen
32 assumption
33 cells
34 clones
35 control
36 control of proliferation
37 decay
38 different states
39 dominant interaction
40 effect
41 equilibrium
42 escape
43 excessive proliferation
44 external antigens
45 general assumptions
46 idiotypic immune network
47 idiotypic interactions
48 idiotypic network
49 immune network
50 immune regulation
51 immune response
52 immune state
53 important role
54 incorporates
55 infinite proliferation
56 influx
57 interaction
58 large clones
59 maximum
60 memory
61 model
62 multiple stable states
63 network
64 new symmetric model
65 parameters
66 proliferation
67 proliferation control
68 proliferative immune responses
69 reciprocal stimulation
70 regulation
71 response
72 results
73 robustness
74 role
75 stable equilibrium
76 stable state
77 state
78 state switching
79 stimulation
80 stimulatory
81 suppression
82 suppressor
83 switch
84 switching
85 symmetric model
86 symmetric networks
87 system
88 virgin
89 virgin state
90 schema:name Memory but no suppression in low-dimensional symmetric idiotypic networks
91 schema:pagination 223-246
92 schema:productId Na5bc04b53ecf48c4946b0b1e1cb39f83
93 Ne6ad1ae0566048f1977e01415142cd9d
94 Ne7a5f39163d24851ba29b22de27b9b70
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001691997
96 https://doi.org/10.1007/bf02458444
97 schema:sdDatePublished 2022-09-02T15:46
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nb86192f166064bb8974b4c7d4a72deb2
100 schema:url https://doi.org/10.1007/bf02458444
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N16f8716acfdb4d90aad1c4b97ee9c519 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Immunoglobulin Idiotypes
106 rdf:type schema:DefinedTerm
107 N475d320bb0f14928be4c48a65bccb9a8 rdf:first sg:person.014656171554.05
108 rdf:rest rdf:nil
109 N6e625d19858146cba4fb3f7e5eae5dd8 schema:issueNumber 2
110 rdf:type schema:PublicationIssue
111 N754beda0e27343c3bdd165d241655336 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Models, Biological
113 rdf:type schema:DefinedTerm
114 N8e718e75f5bb4996b9d70817623d1825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Animals
116 rdf:type schema:DefinedTerm
117 Na5bc04b53ecf48c4946b0b1e1cb39f83 schema:name dimensions_id
118 schema:value pub.1001691997
119 rdf:type schema:PropertyValue
120 Naadf5f841bb5407786c754387caec254 rdf:first sg:person.0774503452.97
121 rdf:rest N475d320bb0f14928be4c48a65bccb9a8
122 Nb86192f166064bb8974b4c7d4a72deb2 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nba264ea9903041c5a49c9c03455785f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Models, Theoretical
126 rdf:type schema:DefinedTerm
127 Nd6206bab00c04c4bb1ef3911564885aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Immune Tolerance
129 rdf:type schema:DefinedTerm
130 Ne6ad1ae0566048f1977e01415142cd9d schema:name doi
131 schema:value 10.1007/bf02458444
132 rdf:type schema:PropertyValue
133 Ne7a5f39163d24851ba29b22de27b9b70 schema:name pubmed_id
134 schema:value 2924020
135 rdf:type schema:PropertyValue
136 Nf9b8178454f64b7281b30ceddb1a0519 schema:volumeNumber 51
137 rdf:type schema:PublicationVolume
138 Nfddd1ff204c141e6b570130509dd21f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Immunologic Memory
140 rdf:type schema:DefinedTerm
141 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
142 schema:name Mathematical Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 sg:journal.1018370 schema:issn 0092-8240
148 1522-9602
149 schema:name Bulletin of Mathematical Biology
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.014656171554.05 schema:affiliation grid-institutes:grid.5477.1
153 schema:familyName Hogeweg
154 schema:givenName Pauline
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014656171554.05
156 rdf:type schema:Person
157 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
158 schema:familyName De Boer
159 schema:givenName Rob J.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
161 rdf:type schema:Person
162 sg:pub.10.1007/978-1-4684-3701-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014960402
163 https://doi.org/10.1007/978-1-4684-3701-0_6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-1-4684-4739-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048043927
166 https://doi.org/10.1007/978-1-4684-4739-2_16
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-3-642-93130-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020302158
169 https://doi.org/10.1007/978-3-642-93130-7_20
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf02237954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774498
172 https://doi.org/10.1007/bf02237954
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf02458443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014082776
175 https://doi.org/10.1007/bf02458443
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/bf02460115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017644408
178 https://doi.org/10.1007/bf02460115
179 rdf:type schema:CreativeWork
180 sg:pub.10.1016/s0092-8240(89)80069-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614973
181 https://doi.org/10.1016/s0092-8240(89)80069-2
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/316412a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052615478
184 https://doi.org/10.1038/316412a0
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.5477.1 schema:alternateName Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
187 schema:name Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...