Prediction of sampling depth and photon pathlength in laser Doppler flowmetry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-05

AUTHORS

A. Jakobsson, G. E. Nilsson

ABSTRACT

Monte Carlo simulation of photon migration in tissue was used to assess the sampling depth, measuring depth and photon pathlength in laser Doppler flowmetry. The median sampling depth and photon pathlength in skin, liver and brain tissue were calculated for different probe geometries. The shallowest median sampling depth found was 68 microns for a 120 microns diameter single fibre probe applied to a one-layered skin tissue model. By using separate transmitting and receiving fibres, the median sampling depth, which amounted to 146 microns for a 250 microns fibre centre separation, can be successively increased to 233 microns when the fibres' centres are separated by 700 microns. Total photon pathlength and thereby the number of multiple Doppler shifts increase with fibre separation, thus favouring the choice of a probe with a small fibre separation when linearity is more important than a large sampling depth. Owing mainly to differences in the tissue g-value and scattering coefficient, the median sampling depth is shallower for liver and deeper for brain, in comparison with skin tissue. For skin tissue, the influence on the sampling depth of a homogeneously distributed blood volume was found to be limited to about 1 per cent per percentage increase in tissue blood content, and may, therefore, be disregarded in most practical situations. Simulations show that the median measuring depth is strongly dependent on the perfusion profile. More... »

PAGES

301-307

References to SciGraph publications

  • 1990. The Cutaneous Circulation in LASER-DOPPLER BLOOD FLOWMETRY
  • 1990. Medpacific’s LDV Blood Flowmeter in LASER-DOPPLER BLOOD FLOWMETRY
  • 1990-09. Correlation of Laser Doppler Wave Patterns with Underlying Microvascular Anatomy in JOURNAL OF INVESTIGATIVE DERMATOLOGY
  • 1990. Perimed’s LDV Flowmeter in LASER-DOPPLER BLOOD FLOWMETRY
  • 1990. TSI’s LDV Blood Flowmeter in LASER-DOPPLER BLOOD FLOWMETRY
  • 1986-07. Integrating probe for tissue laser Doppler flowmeters in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 1984-07. Signal processor for laser Doppler tissue flowmeters in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 1988-05. Partitional measurement of capillary and arteriovenous anastomotic blood flow in the human finger by laser-Doppler-flowmeter in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02458050

    DOI

    http://dx.doi.org/10.1007/bf02458050

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042384273

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8412384


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Laser-Doppler Flowmetry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Light", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Monte Carlo Method", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regional Blood Flow", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Scattering, Radiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Skin", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Link\u00f6ping University", 
              "id": "https://www.grid.ac/institutes/grid.5640.7", 
              "name": [
                "Department of Biomedical Engineering, Biomedical Instrumentation, Link\u00f6ping University, S-581 85, Link\u00f6ping, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jakobsson", 
            "givenName": "A.", 
            "id": "sg:person.010377005571.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377005571.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Link\u00f6ping University", 
              "id": "https://www.grid.ac/institutes/grid.5640.7", 
              "name": [
                "Department of Biomedical Engineering, Biomedical Instrumentation, Link\u00f6ping University, S-581 85, Link\u00f6ping, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nilsson", 
            "givenName": "G. E.", 
            "id": "sg:person.0732575636.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732575636.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-2083-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007118750", 
              "https://doi.org/10.1007/978-1-4757-2083-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0016-5085(85)80013-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010338697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lsm.1900060603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012056615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02442104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014605834", 
              "https://doi.org/10.1007/bf02442104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02442104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014605834", 
              "https://doi.org/10.1007/bf02442104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-374701-3.50015-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016968730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500348914550381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018309111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lsm.1900090108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021598363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2083-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036643961", 
              "https://doi.org/10.1007/978-1-4757-2083-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02442697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037550039", 
              "https://doi.org/10.1007/bf02442697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02442697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037550039", 
              "https://doi.org/10.1007/bf02442697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.595361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037772068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00418472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038631080", 
              "https://doi.org/10.1007/bf00418472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00418472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038631080", 
              "https://doi.org/10.1007/bf00418472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2083-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038734869", 
              "https://doi.org/10.1007/978-1-4757-2083-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/00365528708991962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042994425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2083-9_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047441899", 
              "https://doi.org/10.1007/978-1-4757-2083-9_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/1523-1747.ep12484917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053320574", 
              "https://doi.org/10.1111/1523-1747.ep12484917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/144246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058475537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.42107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.42108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/16.24363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061093383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1980.326582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061524540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1980.326686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061524610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1989.1173624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061525656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.15.002059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065092303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.28.002318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065103816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077622146", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpgi.1985.249.4.g539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079459774"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-05", 
        "datePublishedReg": "1993-05-01", 
        "description": "Monte Carlo simulation of photon migration in tissue was used to assess the sampling depth, measuring depth and photon pathlength in laser Doppler flowmetry. The median sampling depth and photon pathlength in skin, liver and brain tissue were calculated for different probe geometries. The shallowest median sampling depth found was 68 microns for a 120 microns diameter single fibre probe applied to a one-layered skin tissue model. By using separate transmitting and receiving fibres, the median sampling depth, which amounted to 146 microns for a 250 microns fibre centre separation, can be successively increased to 233 microns when the fibres' centres are separated by 700 microns. Total photon pathlength and thereby the number of multiple Doppler shifts increase with fibre separation, thus favouring the choice of a probe with a small fibre separation when linearity is more important than a large sampling depth. Owing mainly to differences in the tissue g-value and scattering coefficient, the median sampling depth is shallower for liver and deeper for brain, in comparison with skin tissue. For skin tissue, the influence on the sampling depth of a homogeneously distributed blood volume was found to be limited to about 1 per cent per percentage increase in tissue blood content, and may, therefore, be disregarded in most practical situations. Simulations show that the median measuring depth is strongly dependent on the perfusion profile.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02458050", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1005585", 
            "issn": [
              "1357-5481", 
              "1741-0444"
            ], 
            "name": "Medical & Biological Engineering & Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Prediction of sampling depth and photon pathlength in laser Doppler flowmetry", 
        "pagination": "301-307", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c9e52ddd9b80a25343f406b2ae1950a5acbcab5d2ada866d5f7a923781e6aecf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8412384"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7704869"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02458050"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042384273"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02458050", 
          "https://app.dimensions.ai/details/publication/pub.1042384273"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02458050"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02458050'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02458050'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02458050'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02458050'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      21 PREDICATES      62 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02458050 schema:about N38a14ba5ac7e4a47a031bd8672bd362b
    2 N53c75bf994e5420c9b244fd7df7b4d1e
    3 N685f6a63641348189714c0b1e7a2d90a
    4 N9cd5afb91e554c65804749caef8d2458
    5 Ncde0686fee6f49aca1ac864a90e1269f
    6 Ndff412bd419448de9570ae622ea6ca39
    7 Ne368ecc51f8b4368ac12cf73873d22c7
    8 anzsrc-for:09
    9 anzsrc-for:0904
    10 schema:author N5f9772c2205e48f59dbbc048c3b50884
    11 schema:citation sg:pub.10.1007/978-1-4757-2083-9_3
    12 sg:pub.10.1007/978-1-4757-2083-9_4
    13 sg:pub.10.1007/978-1-4757-2083-9_5
    14 sg:pub.10.1007/978-1-4757-2083-9_8
    15 sg:pub.10.1007/bf00418472
    16 sg:pub.10.1007/bf02442104
    17 sg:pub.10.1007/bf02442697
    18 sg:pub.10.1111/1523-1747.ep12484917
    19 https://app.dimensions.ai/details/publication/pub.1077622146
    20 https://doi.org/10.1002/lsm.1900060603
    21 https://doi.org/10.1002/lsm.1900090108
    22 https://doi.org/10.1016/b978-0-12-374701-3.50015-6
    23 https://doi.org/10.1016/s0016-5085(85)80013-5
    24 https://doi.org/10.1080/09500348914550381
    25 https://doi.org/10.1086/144246
    26 https://doi.org/10.1109/10.42107
    27 https://doi.org/10.1109/10.42108
    28 https://doi.org/10.1109/16.24363
    29 https://doi.org/10.1109/tbme.1980.326582
    30 https://doi.org/10.1109/tbme.1980.326686
    31 https://doi.org/10.1109/tbme.1989.1173624
    32 https://doi.org/10.1118/1.595361
    33 https://doi.org/10.1152/ajpgi.1985.249.4.g539
    34 https://doi.org/10.1364/ao.15.002059
    35 https://doi.org/10.1364/ao.28.002318
    36 https://doi.org/10.3109/00365528708991962
    37 schema:datePublished 1993-05
    38 schema:datePublishedReg 1993-05-01
    39 schema:description Monte Carlo simulation of photon migration in tissue was used to assess the sampling depth, measuring depth and photon pathlength in laser Doppler flowmetry. The median sampling depth and photon pathlength in skin, liver and brain tissue were calculated for different probe geometries. The shallowest median sampling depth found was 68 microns for a 120 microns diameter single fibre probe applied to a one-layered skin tissue model. By using separate transmitting and receiving fibres, the median sampling depth, which amounted to 146 microns for a 250 microns fibre centre separation, can be successively increased to 233 microns when the fibres' centres are separated by 700 microns. Total photon pathlength and thereby the number of multiple Doppler shifts increase with fibre separation, thus favouring the choice of a probe with a small fibre separation when linearity is more important than a large sampling depth. Owing mainly to differences in the tissue g-value and scattering coefficient, the median sampling depth is shallower for liver and deeper for brain, in comparison with skin tissue. For skin tissue, the influence on the sampling depth of a homogeneously distributed blood volume was found to be limited to about 1 per cent per percentage increase in tissue blood content, and may, therefore, be disregarded in most practical situations. Simulations show that the median measuring depth is strongly dependent on the perfusion profile.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N50b39bf0fc0f42ecb409fe33c4f32a3a
    44 N83a94d1c0d684d4f9a953f96cc4d319d
    45 sg:journal.1005585
    46 schema:name Prediction of sampling depth and photon pathlength in laser Doppler flowmetry
    47 schema:pagination 301-307
    48 schema:productId N20062c9b8e5e4fabb0e08ba0faa118fa
    49 N220825bc30c943c2a19ccaa8dd2690b9
    50 N334a80e43876426db9386fc6554d8ee9
    51 N6132de5979214fc0b5ec42861090574e
    52 N8ccc3c40b4974967a34bee983a1c9de1
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042384273
    54 https://doi.org/10.1007/bf02458050
    55 schema:sdDatePublished 2019-04-11T13:34
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N1513ec8ac3714047a7aced92ef889bdf
    58 schema:url http://link.springer.com/10.1007/BF02458050
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N1513ec8ac3714047a7aced92ef889bdf schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N20062c9b8e5e4fabb0e08ba0faa118fa schema:name readcube_id
    65 schema:value c9e52ddd9b80a25343f406b2ae1950a5acbcab5d2ada866d5f7a923781e6aecf
    66 rdf:type schema:PropertyValue
    67 N220825bc30c943c2a19ccaa8dd2690b9 schema:name doi
    68 schema:value 10.1007/bf02458050
    69 rdf:type schema:PropertyValue
    70 N334a80e43876426db9386fc6554d8ee9 schema:name pubmed_id
    71 schema:value 8412384
    72 rdf:type schema:PropertyValue
    73 N38a14ba5ac7e4a47a031bd8672bd362b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Light
    75 rdf:type schema:DefinedTerm
    76 N50b39bf0fc0f42ecb409fe33c4f32a3a schema:volumeNumber 31
    77 rdf:type schema:PublicationVolume
    78 N53c75bf994e5420c9b244fd7df7b4d1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Humans
    80 rdf:type schema:DefinedTerm
    81 N5f9772c2205e48f59dbbc048c3b50884 rdf:first sg:person.010377005571.03
    82 rdf:rest Nf2f0403cd29443669a0edcf86304d820
    83 N6132de5979214fc0b5ec42861090574e schema:name nlm_unique_id
    84 schema:value 7704869
    85 rdf:type schema:PropertyValue
    86 N685f6a63641348189714c0b1e7a2d90a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Regional Blood Flow
    88 rdf:type schema:DefinedTerm
    89 N83a94d1c0d684d4f9a953f96cc4d319d schema:issueNumber 3
    90 rdf:type schema:PublicationIssue
    91 N8ccc3c40b4974967a34bee983a1c9de1 schema:name dimensions_id
    92 schema:value pub.1042384273
    93 rdf:type schema:PropertyValue
    94 N9cd5afb91e554c65804749caef8d2458 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Monte Carlo Method
    96 rdf:type schema:DefinedTerm
    97 Ncde0686fee6f49aca1ac864a90e1269f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Skin
    99 rdf:type schema:DefinedTerm
    100 Ndff412bd419448de9570ae622ea6ca39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Scattering, Radiation
    102 rdf:type schema:DefinedTerm
    103 Ne368ecc51f8b4368ac12cf73873d22c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Laser-Doppler Flowmetry
    105 rdf:type schema:DefinedTerm
    106 Nf2f0403cd29443669a0edcf86304d820 rdf:first sg:person.0732575636.72
    107 rdf:rest rdf:nil
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Chemical Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1005585 schema:issn 1357-5481
    115 1741-0444
    116 schema:name Medical & Biological Engineering & Computing
    117 rdf:type schema:Periodical
    118 sg:person.010377005571.03 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
    119 schema:familyName Jakobsson
    120 schema:givenName A.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377005571.03
    122 rdf:type schema:Person
    123 sg:person.0732575636.72 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
    124 schema:familyName Nilsson
    125 schema:givenName G. E.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732575636.72
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-1-4757-2083-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118750
    129 https://doi.org/10.1007/978-1-4757-2083-9_3
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-1-4757-2083-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036643961
    132 https://doi.org/10.1007/978-1-4757-2083-9_4
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-1-4757-2083-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047441899
    135 https://doi.org/10.1007/978-1-4757-2083-9_5
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-1-4757-2083-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038734869
    138 https://doi.org/10.1007/978-1-4757-2083-9_8
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf00418472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038631080
    141 https://doi.org/10.1007/bf00418472
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf02442104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014605834
    144 https://doi.org/10.1007/bf02442104
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf02442697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037550039
    147 https://doi.org/10.1007/bf02442697
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1111/1523-1747.ep12484917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053320574
    150 https://doi.org/10.1111/1523-1747.ep12484917
    151 rdf:type schema:CreativeWork
    152 https://app.dimensions.ai/details/publication/pub.1077622146 schema:CreativeWork
    153 https://doi.org/10.1002/lsm.1900060603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012056615
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1002/lsm.1900090108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021598363
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/b978-0-12-374701-3.50015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016968730
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0016-5085(85)80013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010338697
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1080/09500348914550381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018309111
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1086/144246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058475537
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/10.42107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084680
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/10.42108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084681
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/16.24363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061093383
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/tbme.1980.326582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061524540
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/tbme.1980.326686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061524610
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/tbme.1989.1173624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525656
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1118/1.595361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037772068
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1152/ajpgi.1985.249.4.g539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079459774
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1364/ao.15.002059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065092303
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1364/ao.28.002318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065103816
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.3109/00365528708991962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042994425
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
    188 schema:name Department of Biomedical Engineering, Biomedical Instrumentation, Linköping University, S-581 85, Linköping, Sweden
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...