On the decomposition of complex vector spaces and the jord an canonical form of complex linear transformations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-11

AUTHORS

Xiao Heng, Guo Zhong-heng

ABSTRACT

New objects characterizing the structure of complex linear transformations are introduced. These new objects yield a new result for the decomposition of complex vector spaces relative to complex linear transformations and provide all Jordan bases by which the Jordan canonical form is constructed. Accordingly, they can result in the celebrated Jordan theorem and the third decomposition theorem of space directly and, moreover, they can give a new deep insight into the exquisite and subtle structure of the Jordan form. The latter indicates that the Jordan canonical form of a complex linear transformation is an invariant structure associated with double arbitrary choices. More... »

PAGES

997-1003

Journal

TITLE

Applied Mathematics and Mechanics

ISSUE

11

VOLUME

15

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02455391

DOI

http://dx.doi.org/10.1007/bf02455391

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033883508


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Mathematics, Peking University, Beijing"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heng", 
        "givenName": "Xiao", 
        "id": "sg:person.011151007613.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151007613.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Mathematics, Peking University, Beijing"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong-heng", 
        "givenName": "Guo", 
        "id": "sg:person.012446045277.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446045277.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994-11", 
    "datePublishedReg": "1994-11-01", 
    "description": "New objects characterizing the structure of complex linear transformations are introduced. These new objects yield a new result for the decomposition of complex vector spaces relative to complex linear transformations and provide all Jordan bases by which the Jordan canonical form is constructed. Accordingly, they can result in the celebrated Jordan theorem and the third decomposition theorem of space directly and, moreover, they can give a new deep insight into the exquisite and subtle structure of the Jordan form. The latter indicates that the Jordan canonical form of a complex linear transformation is an invariant structure associated with double arbitrary choices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02455391", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327801", 
        "issn": [
          "0253-4827", 
          "1000-0887"
        ], 
        "name": "Applied Mathematics and Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "On the decomposition of complex vector spaces and the jord an canonical form of complex linear transformations", 
    "pagination": "997-1003", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a16993638cde064b39082976209d248e8ed6a8131ebc4f05ca1b2bf0712838da"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02455391"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033883508"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02455391", 
      "https://app.dimensions.ai/details/publication/pub.1033883508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000533.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02455391"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02455391'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02455391'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02455391'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02455391'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02455391 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7c692cf341864bd7bc21e4529910b9c9
4 schema:datePublished 1994-11
5 schema:datePublishedReg 1994-11-01
6 schema:description New objects characterizing the structure of complex linear transformations are introduced. These new objects yield a new result for the decomposition of complex vector spaces relative to complex linear transformations and provide all Jordan bases by which the Jordan canonical form is constructed. Accordingly, they can result in the celebrated Jordan theorem and the third decomposition theorem of space directly and, moreover, they can give a new deep insight into the exquisite and subtle structure of the Jordan form. The latter indicates that the Jordan canonical form of a complex linear transformation is an invariant structure associated with double arbitrary choices.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N4fb6b10e7c044a88802a6eec6b20d889
11 Nb7f9a7614685470f8f850d3f19a6b987
12 sg:journal.1327801
13 schema:name On the decomposition of complex vector spaces and the jord an canonical form of complex linear transformations
14 schema:pagination 997-1003
15 schema:productId N25be26a2ace742c3ba05b18830d1e640
16 N3ed83dcc0c3c487cad0e86022049d373
17 Nc04c9d74e9b749b39bfcd53de7ddf2c0
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033883508
19 https://doi.org/10.1007/bf02455391
20 schema:sdDatePublished 2019-04-10T21:41
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N98474f77f79a41a7958eff77fab0866e
23 schema:url http://link.springer.com/10.1007%2FBF02455391
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N25be26a2ace742c3ba05b18830d1e640 schema:name dimensions_id
28 schema:value pub.1033883508
29 rdf:type schema:PropertyValue
30 N3ed83dcc0c3c487cad0e86022049d373 schema:name doi
31 schema:value 10.1007/bf02455391
32 rdf:type schema:PropertyValue
33 N4fb6b10e7c044a88802a6eec6b20d889 schema:volumeNumber 15
34 rdf:type schema:PublicationVolume
35 N66c09ec9fa8249a99b51bcd0e26538d2 rdf:first sg:person.012446045277.22
36 rdf:rest rdf:nil
37 N7c692cf341864bd7bc21e4529910b9c9 rdf:first sg:person.011151007613.33
38 rdf:rest N66c09ec9fa8249a99b51bcd0e26538d2
39 N98474f77f79a41a7958eff77fab0866e schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nb7f9a7614685470f8f850d3f19a6b987 schema:issueNumber 11
42 rdf:type schema:PublicationIssue
43 Nc04c9d74e9b749b39bfcd53de7ddf2c0 schema:name readcube_id
44 schema:value a16993638cde064b39082976209d248e8ed6a8131ebc4f05ca1b2bf0712838da
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1327801 schema:issn 0253-4827
53 1000-0887
54 schema:name Applied Mathematics and Mechanics
55 rdf:type schema:Periodical
56 sg:person.011151007613.33 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
57 schema:familyName Heng
58 schema:givenName Xiao
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151007613.33
60 rdf:type schema:Person
61 sg:person.012446045277.22 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
62 schema:familyName Zhong-heng
63 schema:givenName Guo
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446045277.22
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
67 schema:name Department of Mathematics, Peking University, Beijing
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...