Dirac equation path integral: Interpreting the Grassmann variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-01

AUTHORS

B. Gaveau, L. S. Schulman

ABSTRACT

A functional integral for a particle obeying the Dirac equation is presented. In earlier work (reviewed here) we showed that 1) such a particle could be described as a massless particle randomly flipping direction and helicity at a complex ratei/m and 2) its between-flips propagation could be written as a sum over paths for a Grassmann variable valued stochastic process. We here extend the earlier work by providing a geometrical interpretation of the Grassmann variables as forms onSU(2). With this interpretation we clarify the supersymmetric correspondence relating products of Grassmann variables to spatial coordinates. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02450232

DOI

http://dx.doi.org/10.1007/bf02450232

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010857347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Department of Mathematics, University of Paris VI, 4 pl. Jussieu, 75252, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaveau", 
        "givenName": "B.", 
        "id": "sg:person.011754127724.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Physics Department, Clarkson University, 13676, Potsdam, N.Y."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulman", 
        "givenName": "L. S.", 
        "id": "sg:person.010275521604.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(70)90138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053582873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(70)90138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053582873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.526360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058103379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/17/2/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.133.b1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.133.b1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.36.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060694890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.36.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060694890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.20.367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.20.367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmj-1974-4-3-443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064427548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmj-1974-4-3-497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064427550"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-01", 
    "datePublishedReg": "1989-01-01", 
    "description": "A functional integral for a particle obeying the Dirac equation is presented. In earlier work (reviewed here) we showed that 1) such a particle could be described as a massless particle randomly flipping direction and helicity at a complex ratei/m and 2) its between-flips propagation could be written as a sum over paths for a Grassmann variable valued stochastic process. We here extend the earlier work by providing a geometrical interpretation of the Grassmann variables as forms onSU(2). With this interpretation we clarify the supersymmetric correspondence relating products of Grassmann variables to spatial coordinates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02450232", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1137563", 
        "issn": [
          "0392-6737", 
          "1826-9893"
        ], 
        "name": "Il Nuovo Cimento D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Dirac equation path integral: Interpreting the Grassmann variables", 
    "pagination": "31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33ba23e155cdbb25ddb36ba1bc2fd789e6b2ff27a72e6f314051d09687457664"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02450232"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010857347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02450232", 
      "https://app.dimensions.ai/details/publication/pub.1010857347"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02450232"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02450232'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02450232'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02450232'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02450232'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02450232 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N8140b8f81cee4eb59070426532cb9759
4 schema:citation https://doi.org/10.1016/0550-3213(70)90138-0
5 https://doi.org/10.1063/1.526360
6 https://doi.org/10.1088/0305-4470/17/2/023
7 https://doi.org/10.1103/physrev.133.b1318
8 https://doi.org/10.1103/physrevd.36.1135
9 https://doi.org/10.1103/physrevlett.53.419
10 https://doi.org/10.1103/revmodphys.20.367
11 https://doi.org/10.1103/revmodphys.58.449
12 https://doi.org/10.1216/rmj-1974-4-3-443
13 https://doi.org/10.1216/rmj-1974-4-3-497
14 schema:datePublished 1989-01
15 schema:datePublishedReg 1989-01-01
16 schema:description A functional integral for a particle obeying the Dirac equation is presented. In earlier work (reviewed here) we showed that 1) such a particle could be described as a massless particle randomly flipping direction and helicity at a complex ratei/m and 2) its between-flips propagation could be written as a sum over paths for a Grassmann variable valued stochastic process. We here extend the earlier work by providing a geometrical interpretation of the Grassmann variables as forms onSU(2). With this interpretation we clarify the supersymmetric correspondence relating products of Grassmann variables to spatial coordinates.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2beb3c420976486fbec168a206742550
21 N6c5388df84054d45b8d551bdbbc09272
22 sg:journal.1137563
23 schema:name Dirac equation path integral: Interpreting the Grassmann variables
24 schema:pagination 31
25 schema:productId N31f811bb83a741a3a0d0214822f4a74d
26 Nc13eb7f259784fc1bf1a6b3a63422e7e
27 Nf849fd9272094ed28f15a178aab603d3
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010857347
29 https://doi.org/10.1007/bf02450232
30 schema:sdDatePublished 2019-04-11T13:28
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N8f536deab89d4bf4843a25513751a707
33 schema:url http://link.springer.com/10.1007%2FBF02450232
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N2beb3c420976486fbec168a206742550 schema:issueNumber 1-2
38 rdf:type schema:PublicationIssue
39 N31f811bb83a741a3a0d0214822f4a74d schema:name readcube_id
40 schema:value 33ba23e155cdbb25ddb36ba1bc2fd789e6b2ff27a72e6f314051d09687457664
41 rdf:type schema:PropertyValue
42 N6c5388df84054d45b8d551bdbbc09272 schema:volumeNumber 11
43 rdf:type schema:PublicationVolume
44 N8140b8f81cee4eb59070426532cb9759 rdf:first sg:person.011754127724.08
45 rdf:rest Ndd1cad66cf6946dbbae7bfb1fca99124
46 N8f536deab89d4bf4843a25513751a707 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nc13eb7f259784fc1bf1a6b3a63422e7e schema:name dimensions_id
49 schema:value pub.1010857347
50 rdf:type schema:PropertyValue
51 Ndd1cad66cf6946dbbae7bfb1fca99124 rdf:first sg:person.010275521604.97
52 rdf:rest rdf:nil
53 Nf849fd9272094ed28f15a178aab603d3 schema:name doi
54 schema:value 10.1007/bf02450232
55 rdf:type schema:PropertyValue
56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
57 schema:name Engineering
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
60 schema:name Resources Engineering and Extractive Metallurgy
61 rdf:type schema:DefinedTerm
62 sg:journal.1137563 schema:issn 0392-6737
63 1826-9893
64 schema:name Il Nuovo Cimento D
65 rdf:type schema:Periodical
66 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
67 schema:familyName Schulman
68 schema:givenName L. S.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
70 rdf:type schema:Person
71 sg:person.011754127724.08 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
72 schema:familyName Gaveau
73 schema:givenName B.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08
75 rdf:type schema:Person
76 https://doi.org/10.1016/0550-3213(70)90138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053582873
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1063/1.526360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058103379
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1088/0305-4470/17/2/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067155
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrev.133.b1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428247
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrevd.36.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060694890
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevlett.53.419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790908
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/revmodphys.20.367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837316
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/revmodphys.58.449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839096
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1216/rmj-1974-4-3-443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064427548
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1216/rmj-1974-4-3-497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064427550
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
97 schema:name Physics Department, Clarkson University, 13676, Potsdam, N.Y.
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
100 schema:name Department of Mathematics, University of Paris VI, 4 pl. Jussieu, 75252, Paris Cedex 05, France
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...