The use of protein characteristics to assess the retrievability of ancient DNA from ancient bones View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

S. Audic, M. El Masouri, E. Béraud-Colomb

ABSTRACT

The ability to retrieve DNA from ancient specimens has been one of the greatest achievements of the past decade, and has opened a totally new field of research with applications in seemingly distant domains such as archeobotany, the molecular phylogeny of extinct genomes, human paleopathology and the genetic of ancient human populations. However, extraction of ancient DNA has often a very low rate of success, prompting researchers to develop screening methods for the selection of promising specimens. With this goal in mind, we studied the amino acid content of nine human bones of ancient origin. We demonstrate that a single HPLC chromatogram is indicative of the integrity of ancient bone proteins. Among five specimens containing amplifiable DNA, four exhibited a protein content similar to that of contemporary bone protein content. Three of the four specimens, from which we were unable to extract any amplifiable DNA, had an amino acid content strikingly different from that of contem-porary bone. A non-parametric statistical test, Kendall's tau, was used to show that protein content and PCR products, are probably correlated (at a 95% confidence level). In addition, the D/L Asp and D/L Glu racemization ratios obtained are indicative of the presence of ancient organic compounds. We propose that protein analysis should be systematically performed in studies where there are many samples in order to select the specimens that are most likely to contain retrievable ancient DNA. More... »

PAGES

17-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02447901

DOI

http://dx.doi.org/10.1007/bf02447901

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042110489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "IGS, CNRS EP 91, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Audic", 
        "givenName": "S.", 
        "id": "sg:person.01306150167.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306150167.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IGS, CNRS EP 91, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El Masouri", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IGS, CNRS EP 91, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9raud-Colomb", 
        "givenName": "E.", 
        "id": "sg:person.0655026652.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655026652.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00927978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004755092", 
          "https://doi.org/10.1007/bf00927978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-9822(91)90125-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004877565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80310-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006496256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/24.7.1304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010822994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/349785a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010972482", 
          "https://doi.org/10.1038/349785a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0997-855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011324415", 
          "https://doi.org/10.1038/nbt0997-855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jasc.1995.0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012245238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/303418a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019229987", 
          "https://doi.org/10.1038/303418a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362709a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019428971", 
          "https://doi.org/10.1038/362709a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365700a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028000448", 
          "https://doi.org/10.1038/365700a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/340465a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032040849", 
          "https://doi.org/10.1038/340465a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/evan.1360020605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032068704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/evan.1360020605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032068704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1991.0091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033060853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02109479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038169026", 
          "https://doi.org/10.1007/bf02109479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02109479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038169026", 
          "https://doi.org/10.1007/bf02109479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/286883a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040973782", 
          "https://doi.org/10.1038/286883a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/312282a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042967662", 
          "https://doi.org/10.1038/312282a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330330509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044058588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330330509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044058588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314644a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044179528", 
          "https://doi.org/10.1038/314644a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/369025a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049028076", 
          "https://doi.org/10.1038/369025a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330920405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050784122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330920405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050784122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jasc.1996.0075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051244391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.170.3959.730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062501668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.173.4000.907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062503395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5263.864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2999980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062580102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7761839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082847932", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "The ability to retrieve DNA from ancient specimens has been one of the greatest achievements of the past decade, and has opened a totally new field of research with applications in seemingly distant domains such as archeobotany, the molecular phylogeny of extinct genomes, human paleopathology and the genetic of ancient human populations. However, extraction of ancient DNA has often a very low rate of success, prompting researchers to develop screening methods for the selection of promising specimens. With this goal in mind, we studied the amino acid content of nine human bones of ancient origin. We demonstrate that a single HPLC chromatogram is indicative of the integrity of ancient bone proteins. Among five specimens containing amplifiable DNA, four exhibited a protein content similar to that of contemporary bone protein content. Three of the four specimens, from which we were unable to extract any amplifiable DNA, had an amino acid content strikingly different from that of contem-porary bone. A non-parametric statistical test, Kendall's tau, was used to show that protein content and PCR products, are probably correlated (at a 95% confidence level). In addition, the D/L Asp and D/L Glu racemization ratios obtained are indicative of the presence of ancient organic compounds. We propose that protein analysis should be systematically performed in studies where there are many samples in order to select the specimens that are most likely to contain retrievable ancient DNA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02447901", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028243", 
        "issn": [
          "0393-9383", 
          "1824-3096"
        ], 
        "name": "International Journal of Anthropology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "The use of protein characteristics to assess the retrievability of ancient DNA from ancient bones", 
    "pagination": "17-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c897a4cb94ff709c5f509bebb36330017bcefb07969cb3ef65e9dcc86ca4a78f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02447901"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042110489"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02447901", 
      "https://app.dimensions.ai/details/publication/pub.1042110489"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02447901"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02447901'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02447901'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02447901'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02447901'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02447901 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4ce56ef414114a3c9531bc3fe846c6a3
4 schema:citation sg:pub.10.1007/bf00927978
5 sg:pub.10.1007/bf02109479
6 sg:pub.10.1038/286883a0
7 sg:pub.10.1038/303418a0
8 sg:pub.10.1038/312282a0
9 sg:pub.10.1038/314644a0
10 sg:pub.10.1038/340465a0
11 sg:pub.10.1038/349785a0
12 sg:pub.10.1038/362709a0
13 sg:pub.10.1038/365700a0
14 sg:pub.10.1038/369025a0
15 sg:pub.10.1038/nbt0997-855
16 https://app.dimensions.ai/details/publication/pub.1082847932
17 https://doi.org/10.1002/ajpa.1330330509
18 https://doi.org/10.1002/ajpa.1330920405
19 https://doi.org/10.1002/evan.1360020605
20 https://doi.org/10.1006/jasc.1995.0031
21 https://doi.org/10.1006/jasc.1996.0075
22 https://doi.org/10.1016/0960-9822(91)90125-g
23 https://doi.org/10.1016/s0092-8674(00)80310-4
24 https://doi.org/10.1093/nar/24.7.1304
25 https://doi.org/10.1098/rstb.1991.0091
26 https://doi.org/10.1126/science.170.3959.730
27 https://doi.org/10.1126/science.173.4000.907
28 https://doi.org/10.1126/science.272.5263.864
29 https://doi.org/10.1126/science.2999980
30 https://doi.org/10.1126/science.7761839
31 schema:datePublished 2002-01
32 schema:datePublishedReg 2002-01-01
33 schema:description The ability to retrieve DNA from ancient specimens has been one of the greatest achievements of the past decade, and has opened a totally new field of research with applications in seemingly distant domains such as archeobotany, the molecular phylogeny of extinct genomes, human paleopathology and the genetic of ancient human populations. However, extraction of ancient DNA has often a very low rate of success, prompting researchers to develop screening methods for the selection of promising specimens. With this goal in mind, we studied the amino acid content of nine human bones of ancient origin. We demonstrate that a single HPLC chromatogram is indicative of the integrity of ancient bone proteins. Among five specimens containing amplifiable DNA, four exhibited a protein content similar to that of contemporary bone protein content. Three of the four specimens, from which we were unable to extract any amplifiable DNA, had an amino acid content strikingly different from that of contem-porary bone. A non-parametric statistical test, Kendall's tau, was used to show that protein content and PCR products, are probably correlated (at a 95% confidence level). In addition, the D/L Asp and D/L Glu racemization ratios obtained are indicative of the presence of ancient organic compounds. We propose that protein analysis should be systematically performed in studies where there are many samples in order to select the specimens that are most likely to contain retrievable ancient DNA.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N750e2518f627450d9895e2c01102a9f2
38 Nd82bb43d1a294c138088045332c387cb
39 sg:journal.1028243
40 schema:name The use of protein characteristics to assess the retrievability of ancient DNA from ancient bones
41 schema:pagination 17-26
42 schema:productId N1782fb5bc8fa4f83a555c945de616d41
43 N2e812d8eabf6457495ad67071f37f343
44 N2fd89f9bf1064973a48d056ed22553bd
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042110489
46 https://doi.org/10.1007/bf02447901
47 schema:sdDatePublished 2019-04-10T22:30
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nf1edaec00bb441e0af6f7f3f02d85163
50 schema:url http://link.springer.com/10.1007%2FBF02447901
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N10514fb3cb0843b6acd86eb93b648de0 schema:name IGS, CNRS EP 91, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
55 rdf:type schema:Organization
56 N1782fb5bc8fa4f83a555c945de616d41 schema:name readcube_id
57 schema:value c897a4cb94ff709c5f509bebb36330017bcefb07969cb3ef65e9dcc86ca4a78f
58 rdf:type schema:PropertyValue
59 N25d2cdbabc27471aa6341ea2eb216913 schema:name IGS, CNRS EP 91, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
60 rdf:type schema:Organization
61 N2e812d8eabf6457495ad67071f37f343 schema:name dimensions_id
62 schema:value pub.1042110489
63 rdf:type schema:PropertyValue
64 N2fd89f9bf1064973a48d056ed22553bd schema:name doi
65 schema:value 10.1007/bf02447901
66 rdf:type schema:PropertyValue
67 N4ce56ef414114a3c9531bc3fe846c6a3 rdf:first sg:person.01306150167.80
68 rdf:rest Ne587689889f54504be6f84ed91a024b4
69 N4f2972f4de40446f8d3e7f66ed98b270 rdf:first sg:person.0655026652.62
70 rdf:rest rdf:nil
71 N750e2518f627450d9895e2c01102a9f2 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N8c598bfdfcd1454aa7c4ffddfdad4a3a schema:affiliation N10514fb3cb0843b6acd86eb93b648de0
74 schema:familyName El Masouri
75 schema:givenName M.
76 rdf:type schema:Person
77 Nbc84bf71c5fc4823b85b0ed47797a5f2 schema:name IGS, CNRS EP 91, 31, Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
78 rdf:type schema:Organization
79 Nd82bb43d1a294c138088045332c387cb schema:volumeNumber 17
80 rdf:type schema:PublicationVolume
81 Ne587689889f54504be6f84ed91a024b4 rdf:first N8c598bfdfcd1454aa7c4ffddfdad4a3a
82 rdf:rest N4f2972f4de40446f8d3e7f66ed98b270
83 Nf1edaec00bb441e0af6f7f3f02d85163 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biological Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
89 schema:name Genetics
90 rdf:type schema:DefinedTerm
91 sg:journal.1028243 schema:issn 0393-9383
92 1824-3096
93 schema:name International Journal of Anthropology
94 rdf:type schema:Periodical
95 sg:person.01306150167.80 schema:affiliation N25d2cdbabc27471aa6341ea2eb216913
96 schema:familyName Audic
97 schema:givenName S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306150167.80
99 rdf:type schema:Person
100 sg:person.0655026652.62 schema:affiliation Nbc84bf71c5fc4823b85b0ed47797a5f2
101 schema:familyName Béraud-Colomb
102 schema:givenName E.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655026652.62
104 rdf:type schema:Person
105 sg:pub.10.1007/bf00927978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004755092
106 https://doi.org/10.1007/bf00927978
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02109479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038169026
109 https://doi.org/10.1007/bf02109479
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/286883a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040973782
112 https://doi.org/10.1038/286883a0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/303418a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019229987
115 https://doi.org/10.1038/303418a0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/312282a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042967662
118 https://doi.org/10.1038/312282a0
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/314644a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044179528
121 https://doi.org/10.1038/314644a0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/340465a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032040849
124 https://doi.org/10.1038/340465a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/349785a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010972482
127 https://doi.org/10.1038/349785a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/362709a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019428971
130 https://doi.org/10.1038/362709a0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/365700a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028000448
133 https://doi.org/10.1038/365700a0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/369025a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049028076
136 https://doi.org/10.1038/369025a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nbt0997-855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011324415
139 https://doi.org/10.1038/nbt0997-855
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1082847932 schema:CreativeWork
142 https://doi.org/10.1002/ajpa.1330330509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044058588
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/ajpa.1330920405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050784122
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/evan.1360020605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032068704
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1006/jasc.1995.0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012245238
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1006/jasc.1996.0075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051244391
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0960-9822(91)90125-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1004877565
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0092-8674(00)80310-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006496256
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/nar/24.7.1304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010822994
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1098/rstb.1991.0091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033060853
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.170.3959.730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062501668
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.173.4000.907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062503395
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.272.5263.864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552990
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.2999980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062580102
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.7761839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649179
169 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...