Mechanical impedance of the canine diaphragm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-07

AUTHORS

B. Suki, T. Csendes, B. Daróczy

ABSTRACT

In the paper the equation of motion of the small amplitude transverse forced vibration of a radially prestressed and circularly clamped thin membrane has been developed. The material of the membrane is considered to be homogeneous, isotropic, incompressible and viscoelastic. From the analytical solution of this equation the incremental mechanical impedance of the membrane was derived as a function of frequency, geometrical parameters and incremental viscoelastic coefficients of the material. The parameters of the model were fitted to experimental impedance data using a global optimisation procedure to obtain the incremental viscoelastic moduli of the canine diaphragm. The estimated quasi-static behaviour of the model is shown to be consistent with the results of experimental quasi-static measurements. It is concluded that the incremental viscoelastic moduli of a soft tissue and the stress dependence of these material coefficients can be determined by fitting the parameters of the model to the impedance data of that particular tissue. More... »

PAGES

367-373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02446156

DOI

http://dx.doi.org/10.1007/bf02446156

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001921631

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2246937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diaphragm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Smooth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Mechanical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tensile Strength", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Szeged", 
          "id": "https://www.grid.ac/institutes/grid.9008.1", 
          "name": [
            "Biomechanics Group Kalm\u00e1r Laboratory of Cybernetics, J\u00f3zsef Attila University, H-6701PO Box 652, Szeged, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "B.", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Szeged", 
          "id": "https://www.grid.ac/institutes/grid.9008.1", 
          "name": [
            "Biomechanics Group Kalm\u00e1r Laboratory of Cybernetics, J\u00f3zsef Attila University, H-6701PO Box 652, Szeged, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Csendes", 
        "givenName": "T.", 
        "id": "sg:person.0651215336.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651215336.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Szeged", 
          "id": "https://www.grid.ac/institutes/grid.9008.1", 
          "name": [
            "Biomechanics Group Kalm\u00e1r Laboratory of Cybernetics, J\u00f3zsef Attila University, H-6701PO Box 652, Szeged, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dar\u00f3czy", 
        "givenName": "B.", 
        "id": "sg:person.01162247457.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162247457.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1113/jphysiol.1961.sp006750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028819533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0043838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034210429", 
          "https://doi.org/10.1007/bfb0043838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1986.60.1.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079462070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1987.62.1.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079820530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplegacy.1967.213.6.1532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081552597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1984.57.1.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081763433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1976.41.3.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083286804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03053788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085906545", 
          "https://doi.org/10.1007/bf03053788"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-07", 
    "datePublishedReg": "1990-07-01", 
    "description": "In the paper the equation of motion of the small amplitude transverse forced vibration of a radially prestressed and circularly clamped thin membrane has been developed. The material of the membrane is considered to be homogeneous, isotropic, incompressible and viscoelastic. From the analytical solution of this equation the incremental mechanical impedance of the membrane was derived as a function of frequency, geometrical parameters and incremental viscoelastic coefficients of the material. The parameters of the model were fitted to experimental impedance data using a global optimisation procedure to obtain the incremental viscoelastic moduli of the canine diaphragm. The estimated quasi-static behaviour of the model is shown to be consistent with the results of experimental quasi-static measurements. It is concluded that the incremental viscoelastic moduli of a soft tissue and the stress dependence of these material coefficients can be determined by fitting the parameters of the model to the impedance data of that particular tissue.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02446156", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Mechanical impedance of the canine diaphragm", 
    "pagination": "367-373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "092745335cb12842a0a355797d07d517f2d8aee060dda220fd8a1911baddef8f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2246937"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02446156"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001921631"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02446156", 
      "https://app.dimensions.ai/details/publication/pub.1001921631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02446156"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02446156'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02446156'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02446156'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02446156'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      45 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02446156 schema:about N12f9e9d7477346be8117b434712aeb79
2 N130b523ebefb427d9a891ad0bccdd9ad
3 N2f282c1889a3467d97b2660c7ed2426a
4 N4e7257566ae44fe59ed798334ca825f6
5 Nb6a0a8d974444f24a2a7f51698cd91f5
6 Nbd65b3340445487d99b057845a478a1f
7 Nc6ac8ea94a7d403997dad11632a60b11
8 Nfe7307f91ab543bbb42642559e1d41f9
9 anzsrc-for:09
10 anzsrc-for:0903
11 schema:author Nd47f1f8b0e4748f6914c5065af893a9d
12 schema:citation sg:pub.10.1007/bf03053788
13 sg:pub.10.1007/bfb0043838
14 https://doi.org/10.1113/jphysiol.1961.sp006750
15 https://doi.org/10.1152/ajplegacy.1967.213.6.1532
16 https://doi.org/10.1152/jappl.1976.41.3.369
17 https://doi.org/10.1152/jappl.1984.57.1.34
18 https://doi.org/10.1152/jappl.1986.60.1.123
19 https://doi.org/10.1152/jappl.1987.62.1.71
20 schema:datePublished 1990-07
21 schema:datePublishedReg 1990-07-01
22 schema:description In the paper the equation of motion of the small amplitude transverse forced vibration of a radially prestressed and circularly clamped thin membrane has been developed. The material of the membrane is considered to be homogeneous, isotropic, incompressible and viscoelastic. From the analytical solution of this equation the incremental mechanical impedance of the membrane was derived as a function of frequency, geometrical parameters and incremental viscoelastic coefficients of the material. The parameters of the model were fitted to experimental impedance data using a global optimisation procedure to obtain the incremental viscoelastic moduli of the canine diaphragm. The estimated quasi-static behaviour of the model is shown to be consistent with the results of experimental quasi-static measurements. It is concluded that the incremental viscoelastic moduli of a soft tissue and the stress dependence of these material coefficients can be determined by fitting the parameters of the model to the impedance data of that particular tissue.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Ncef3b23381e147ac8dfd573764854a12
27 Ndee6513b357d4a5bb35f4f97c3cddb89
28 sg:journal.1005585
29 schema:name Mechanical impedance of the canine diaphragm
30 schema:pagination 367-373
31 schema:productId N19076caf514241c6a26b4fbac9063a17
32 N42c8a58725154cffbddd7808d78e576f
33 N760cf5669da74191bfea6eb49da44cda
34 Nb8fdf0a8ca224921a8d1248f3e6a280e
35 Nd0a1e24d4eca417c97901f0542a2e834
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001921631
37 https://doi.org/10.1007/bf02446156
38 schema:sdDatePublished 2019-04-11T13:30
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ne2739cc73b4d41d5a0d5d6fc2fde64d6
41 schema:url http://link.springer.com/10.1007/BF02446156
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N058c126d2f874750b9a7e7706f2b5bb0 rdf:first sg:person.01162247457.43
46 rdf:rest rdf:nil
47 N12f9e9d7477346be8117b434712aeb79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Animals
49 rdf:type schema:DefinedTerm
50 N130b523ebefb427d9a891ad0bccdd9ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Mathematics
52 rdf:type schema:DefinedTerm
53 N19076caf514241c6a26b4fbac9063a17 schema:name nlm_unique_id
54 schema:value 7704869
55 rdf:type schema:PropertyValue
56 N2f282c1889a3467d97b2660c7ed2426a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Models, Biological
58 rdf:type schema:DefinedTerm
59 N42c8a58725154cffbddd7808d78e576f schema:name doi
60 schema:value 10.1007/bf02446156
61 rdf:type schema:PropertyValue
62 N4e7257566ae44fe59ed798334ca825f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Muscle, Smooth
64 rdf:type schema:DefinedTerm
65 N760cf5669da74191bfea6eb49da44cda schema:name pubmed_id
66 schema:value 2246937
67 rdf:type schema:PropertyValue
68 Nb6a0a8d974444f24a2a7f51698cd91f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Diaphragm
70 rdf:type schema:DefinedTerm
71 Nb8fdf0a8ca224921a8d1248f3e6a280e schema:name dimensions_id
72 schema:value pub.1001921631
73 rdf:type schema:PropertyValue
74 Nbd24e4819c00457ab7c1bc190909eab6 rdf:first sg:person.0651215336.46
75 rdf:rest N058c126d2f874750b9a7e7706f2b5bb0
76 Nbd65b3340445487d99b057845a478a1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Dogs
78 rdf:type schema:DefinedTerm
79 Nc6ac8ea94a7d403997dad11632a60b11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Tensile Strength
81 rdf:type schema:DefinedTerm
82 Ncef3b23381e147ac8dfd573764854a12 schema:volumeNumber 28
83 rdf:type schema:PublicationVolume
84 Nd0a1e24d4eca417c97901f0542a2e834 schema:name readcube_id
85 schema:value 092745335cb12842a0a355797d07d517f2d8aee060dda220fd8a1911baddef8f
86 rdf:type schema:PropertyValue
87 Nd47f1f8b0e4748f6914c5065af893a9d rdf:first sg:person.0730323706.34
88 rdf:rest Nbd24e4819c00457ab7c1bc190909eab6
89 Ndee6513b357d4a5bb35f4f97c3cddb89 schema:issueNumber 4
90 rdf:type schema:PublicationIssue
91 Ne2739cc73b4d41d5a0d5d6fc2fde64d6 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nfe7307f91ab543bbb42642559e1d41f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Stress, Mechanical
95 rdf:type schema:DefinedTerm
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biomedical Engineering
101 rdf:type schema:DefinedTerm
102 sg:journal.1005585 schema:issn 1357-5481
103 1741-0444
104 schema:name Medical & Biological Engineering & Computing
105 rdf:type schema:Periodical
106 sg:person.01162247457.43 schema:affiliation https://www.grid.ac/institutes/grid.9008.1
107 schema:familyName Daróczy
108 schema:givenName B.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162247457.43
110 rdf:type schema:Person
111 sg:person.0651215336.46 schema:affiliation https://www.grid.ac/institutes/grid.9008.1
112 schema:familyName Csendes
113 schema:givenName T.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651215336.46
115 rdf:type schema:Person
116 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.9008.1
117 schema:familyName Suki
118 schema:givenName B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
120 rdf:type schema:Person
121 sg:pub.10.1007/bf03053788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085906545
122 https://doi.org/10.1007/bf03053788
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bfb0043838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034210429
125 https://doi.org/10.1007/bfb0043838
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1113/jphysiol.1961.sp006750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028819533
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1152/ajplegacy.1967.213.6.1532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081552597
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1152/jappl.1976.41.3.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083286804
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1152/jappl.1984.57.1.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081763433
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1152/jappl.1986.60.1.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079462070
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1152/jappl.1987.62.1.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079820530
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.9008.1 schema:alternateName University of Szeged
140 schema:name Biomechanics Group Kalmár Laboratory of Cybernetics, József Attila University, H-6701PO Box 652, Szeged, Hungary
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...