Metabolic myocardial viability assessment with iodine 123-16-iodo-3-methylhexadecanoic acid in recent myocardial infarction: Comparison with thallium-201 and fluorine-18 fluorodeoxyglucose View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-02

AUTHORS

Gérald Vanzetto, Marc Janier, Daniel Fagret, Luc Cinotti, Xavier André-Fouet, Michel Comet, Jacques Machecourt

ABSTRACT

The best test presently available to ascertain residual viability within an infarct-related area involves the use of fluorine-18 fluorodeoxyglucose (FDG) to detect the persistence of some cellular metabolism. Rest reinjection of thallium-201 is a less accurate alternative but is easy to perform. Iodinated fatty acids, which are used with standard gamma cameras, are proposed as markers of cellular metabolism. This study was performed to assess the value of 16-iodo-3-methylhexadecanoic acid (MIHA) as a marker of the residual cellular metabolism by comparison with FDG in patients with a recent myocardial infarction, and to evaluate its contribution compared with the 201Tl stress-redistribution-reinjection technique. Stress-redistribution-reinjection 201Tl imaging, rest MIHA imaging and glucose-loaded FDG imaging were performed in 22 patients with recent myocardial infarction. Out of the 628 myocardial segments obtained from the left ventricular analysis, 400 were hypoperfused (relative uptake <0.75 of maximum uptake on stress 201Tl imaging), 177 of which were severely hypoperfused (relative uptake <0.50). Receiver operating characteristic (ROC) curves for predicting metabolic myocardial viability with FDG were derived from the results in respect of (a) 201Tl activity during exercise, redistribution and reinjection and (b) MIHA uptake, using the two FDG thresholds most commonly considered to define metabolic viability (0.50 and 0.60). Analysis of the 400 hypoperfused segments demonstrated that 201Tl reinjection was the most accurate test in predicting the presence of myocardial viability (area under the ROI curves=0.85 and 0.86 at the 0.50 and 0.60 FDG thresholds, respectively; P<0.05 vs other tests). The global predictive values of MIHA and 201Tl reinjection were, respectively, 0.87 and 0.89 at the 0.50 FDG threshold (NS), and 0.82 and 0.87 at the 0.60 FDG threshold (NS). When only the 177 severely hypoperfused segments were considered, 201Tl reinjection remained the most accurate test (accuracy 0.84 at the 0.50 FDG threshold and 0.82 at the 0.60 FDG threshold), while the accuracy of MIHA decreased significantly (0.78 at the 0.50 FDG threshold and 0.73 at the 0.60 FDG threshold, P<0.05 vs 201Tl reinjection). In all circumstances, MIHA was less specific than 201Tl reinjection for the detection of metabolic viability. In conclusion, in patients with recent myocardial infarction, MIHA accurately detects the persistence of metabolic viability, but is not superior to 201Tl. More... »

PAGES

170-178

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02439549

DOI

http://dx.doi.org/10.1007/bf02439549

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008604505

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9021114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deoxyglucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise Test", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorine Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iodine Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Palmitic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thallium Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.410529.b", 
          "name": [
            "Clinique Cardiologique, Centre Hospitalier Universitaire, Univerist\u00e9 de Grenoble, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanzetto", 
        "givenName": "G\u00e9rald", 
        "id": "sg:person.0633233604.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633233604.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre d'Exploration et de Recherche M\u00e9dicale par Emission de Positrons-CERMEP, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janier", 
        "givenName": "Marc", 
        "id": "sg:person.0577012270.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577012270.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joseph Fourier University", 
          "id": "https://www.grid.ac/institutes/grid.9621.c", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier Universitaire, Universit\u00e9 de Grenoble, BP 217 X, 38043 Cedex 09, Grenoble, France", 
            "Laboratoire d'Etude des Radiopharmaceutiques URA CNRS 1287-Universit\u00e9 de Grenoble, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fagret", 
        "givenName": "Daniel", 
        "id": "sg:person.0106763551.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106763551.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre d'Exploration et de Recherche M\u00e9dicale par Emission de Positrons-CERMEP, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cinotti", 
        "givenName": "Luc", 
        "id": "sg:person.01271560046.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271560046.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre d'Exploration et de Recherche M\u00e9dicale par Emission de Positrons-CERMEP, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andr\u00e9-Fouet", 
        "givenName": "Xavier", 
        "id": "sg:person.01201250513.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201250513.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joseph Fourier University", 
          "id": "https://www.grid.ac/institutes/grid.9621.c", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier Universitaire, Universit\u00e9 de Grenoble, BP 217 X, 38043 Cedex 09, Grenoble, France", 
            "Laboratoire d'Etude des Radiopharmaceutiques URA CNRS 1287-Universit\u00e9 de Grenoble, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comet", 
        "givenName": "Michel", 
        "id": "sg:person.0643421620.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643421620.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.410529.b", 
          "name": [
            "Clinique Cardiologique, Centre Hospitalier Universitaire, Univerist\u00e9 de Grenoble, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Machecourt", 
        "givenName": "Jacques", 
        "id": "sg:person.051240530.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.051240530.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0735-1097(93)90586-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001591509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00797906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001767258", 
          "https://doi.org/10.1007/bf00797906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00797906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001767258", 
          "https://doi.org/10.1007/bf00797906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(92)90782-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004268736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(93)90407-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004462611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.83.1.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005771481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(83)80194-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014285158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-0620(81)90019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016477970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(92)90008-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017402778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018122522", 
          "https://doi.org/10.1007/bf00251787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018122522", 
          "https://doi.org/10.1007/bf00251787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199311253292204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019874241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(93)90582-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027016951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(95)80020-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032306015", 
          "https://doi.org/10.1016/s1071-3581(95)80020-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198604033141405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034880902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199007193230301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036683646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(89)90832-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038736559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039261088", 
          "https://doi.org/10.1007/bf00168164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039261088", 
          "https://doi.org/10.1007/bf00168164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(87)90975-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041606958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.90.6.2687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049681851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90545-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052800500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(83)90394-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053013835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(94)90327-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053381670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.91.4.1006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.92.10.2790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077003842", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077107029", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078046730", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078482899", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079720361", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.148.3.6878708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082007470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082130998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082375133", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082453722", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082499772", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082526440", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082585404", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082665381", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082675129", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082823947", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-02", 
    "datePublishedReg": "1997-02-01", 
    "description": "The best test presently available to ascertain residual viability within an infarct-related area involves the use of fluorine-18 fluorodeoxyglucose (FDG) to detect the persistence of some cellular metabolism. Rest reinjection of thallium-201 is a less accurate alternative but is easy to perform. Iodinated fatty acids, which are used with standard gamma cameras, are proposed as markers of cellular metabolism. This study was performed to assess the value of 16-iodo-3-methylhexadecanoic acid (MIHA) as a marker of the residual cellular metabolism by comparison with FDG in patients with a recent myocardial infarction, and to evaluate its contribution compared with the 201Tl stress-redistribution-reinjection technique. Stress-redistribution-reinjection 201Tl imaging, rest MIHA imaging and glucose-loaded FDG imaging were performed in 22 patients with recent myocardial infarction. Out of the 628 myocardial segments obtained from the left ventricular analysis, 400 were hypoperfused (relative uptake <0.75 of maximum uptake on stress 201Tl imaging), 177 of which were severely hypoperfused (relative uptake <0.50). Receiver operating characteristic (ROC) curves for predicting metabolic myocardial viability with FDG were derived from the results in respect of (a) 201Tl activity during exercise, redistribution and reinjection and (b) MIHA uptake, using the two FDG thresholds most commonly considered to define metabolic viability (0.50 and 0.60). Analysis of the 400 hypoperfused segments demonstrated that 201Tl reinjection was the most accurate test in predicting the presence of myocardial viability (area under the ROI curves=0.85 and 0.86 at the 0.50 and 0.60 FDG thresholds, respectively; P<0.05 vs other tests). The global predictive values of MIHA and 201Tl reinjection were, respectively, 0.87 and 0.89 at the 0.50 FDG threshold (NS), and 0.82 and 0.87 at the 0.60 FDG threshold (NS). When only the 177 severely hypoperfused segments were considered, 201Tl reinjection remained the most accurate test (accuracy 0.84 at the 0.50 FDG threshold and 0.82 at the 0.60 FDG threshold), while the accuracy of MIHA decreased significantly (0.78 at the 0.50 FDG threshold and 0.73 at the 0.60 FDG threshold, P<0.05 vs 201Tl reinjection). In all circumstances, MIHA was less specific than 201Tl reinjection for the detection of metabolic viability. In conclusion, in patients with recent myocardial infarction, MIHA accurately detects the persistence of metabolic viability, but is not superior to 201Tl.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02439549", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Metabolic myocardial viability assessment with iodine 123-16-iodo-3-methylhexadecanoic acid in recent myocardial infarction: Comparison with thallium-201 and fluorine-18 fluorodeoxyglucose", 
    "pagination": "170-178", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28fe8902462fa9242604061f3b1a8272fcb6f296ed3a6d06713875e663f5b249"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9021114"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02439549"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008604505"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02439549", 
      "https://app.dimensions.ai/details/publication/pub.1008604505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46737_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02439549"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02439549'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02439549'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02439549'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02439549'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      21 PREDICATES      83 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02439549 schema:about N21f264ee466e45aba90c3c5981ddb83a
2 N70796235acc34662a7c31e68d4ad04ef
3 N74f6c6ebec1040a2ac32e353f7144d2c
4 N7a9ed0ceaec44c0bb4bb5d4a6c69749c
5 N88ecc3e6783447d1826e1caa586adfcd
6 N92a4befa9940416799b48b2997b27417
7 N94d05a1285b44826b34b506fa2e25aad
8 N990bbb650b9c418783775d52efd2512b
9 N9f501053f1414684a46aad5e760b46b4
10 N9ff1053a2f96469ea8db1449e928759e
11 Nb97eb3a57faa427aa893131bb5aa186e
12 Nc066e75eb64b4825b114ca8623fdd68b
13 Ncdcceef7b0d0443191d4bdbb576e27af
14 Nd696d08530fe432eb5711162648c47e1
15 Ne91f8d0ee7cf436cae19f9cba2b84e12
16 Ne9f0833e78c547378608399edd7e45e4
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N6bdb5648cb954e158b474332652b9189
20 schema:citation sg:pub.10.1007/bf00168164
21 sg:pub.10.1007/bf00251787
22 sg:pub.10.1007/bf00797906
23 sg:pub.10.1016/s1071-3581(95)80020-4
24 https://app.dimensions.ai/details/publication/pub.1077003842
25 https://app.dimensions.ai/details/publication/pub.1077107029
26 https://app.dimensions.ai/details/publication/pub.1078046730
27 https://app.dimensions.ai/details/publication/pub.1078482899
28 https://app.dimensions.ai/details/publication/pub.1079720361
29 https://app.dimensions.ai/details/publication/pub.1082375133
30 https://app.dimensions.ai/details/publication/pub.1082453722
31 https://app.dimensions.ai/details/publication/pub.1082499772
32 https://app.dimensions.ai/details/publication/pub.1082526440
33 https://app.dimensions.ai/details/publication/pub.1082585404
34 https://app.dimensions.ai/details/publication/pub.1082665381
35 https://app.dimensions.ai/details/publication/pub.1082675129
36 https://app.dimensions.ai/details/publication/pub.1082823947
37 https://doi.org/10.1016/0002-8703(94)90545-2
38 https://doi.org/10.1016/0002-9149(83)90394-6
39 https://doi.org/10.1016/0002-9149(87)90975-1
40 https://doi.org/10.1016/0002-9149(89)90832-1
41 https://doi.org/10.1016/0002-9149(92)90782-t
42 https://doi.org/10.1016/0002-9149(94)90327-1
43 https://doi.org/10.1016/0033-0620(81)90019-0
44 https://doi.org/10.1016/0735-1097(92)90008-b
45 https://doi.org/10.1016/0735-1097(93)90407-r
46 https://doi.org/10.1016/0735-1097(93)90582-l
47 https://doi.org/10.1016/0735-1097(93)90586-p
48 https://doi.org/10.1016/s0735-1097(83)80194-6
49 https://doi.org/10.1056/nejm198604033141405
50 https://doi.org/10.1056/nejm199007193230301
51 https://doi.org/10.1056/nejm199311253292204
52 https://doi.org/10.1148/radiology.143.1.7063747
53 https://doi.org/10.1148/radiology.148.3.6878708
54 https://doi.org/10.1161/01.cir.83.1.26
55 https://doi.org/10.1161/01.cir.90.6.2687
56 https://doi.org/10.1161/01.cir.91.4.1006
57 https://doi.org/10.1161/01.cir.92.10.2790
58 schema:datePublished 1997-02
59 schema:datePublishedReg 1997-02-01
60 schema:description The best test presently available to ascertain residual viability within an infarct-related area involves the use of fluorine-18 fluorodeoxyglucose (FDG) to detect the persistence of some cellular metabolism. Rest reinjection of thallium-201 is a less accurate alternative but is easy to perform. Iodinated fatty acids, which are used with standard gamma cameras, are proposed as markers of cellular metabolism. This study was performed to assess the value of 16-iodo-3-methylhexadecanoic acid (MIHA) as a marker of the residual cellular metabolism by comparison with FDG in patients with a recent myocardial infarction, and to evaluate its contribution compared with the 201Tl stress-redistribution-reinjection technique. Stress-redistribution-reinjection 201Tl imaging, rest MIHA imaging and glucose-loaded FDG imaging were performed in 22 patients with recent myocardial infarction. Out of the 628 myocardial segments obtained from the left ventricular analysis, 400 were hypoperfused (relative uptake <0.75 of maximum uptake on stress 201Tl imaging), 177 of which were severely hypoperfused (relative uptake <0.50). Receiver operating characteristic (ROC) curves for predicting metabolic myocardial viability with FDG were derived from the results in respect of (a) 201Tl activity during exercise, redistribution and reinjection and (b) MIHA uptake, using the two FDG thresholds most commonly considered to define metabolic viability (0.50 and 0.60). Analysis of the 400 hypoperfused segments demonstrated that 201Tl reinjection was the most accurate test in predicting the presence of myocardial viability (area under the ROI curves=0.85 and 0.86 at the 0.50 and 0.60 FDG thresholds, respectively; P<0.05 vs other tests). The global predictive values of MIHA and 201Tl reinjection were, respectively, 0.87 and 0.89 at the 0.50 FDG threshold (NS), and 0.82 and 0.87 at the 0.60 FDG threshold (NS). When only the 177 severely hypoperfused segments were considered, 201Tl reinjection remained the most accurate test (accuracy 0.84 at the 0.50 FDG threshold and 0.82 at the 0.60 FDG threshold), while the accuracy of MIHA decreased significantly (0.78 at the 0.50 FDG threshold and 0.73 at the 0.60 FDG threshold, P<0.05 vs 201Tl reinjection). In all circumstances, MIHA was less specific than 201Tl reinjection for the detection of metabolic viability. In conclusion, in patients with recent myocardial infarction, MIHA accurately detects the persistence of metabolic viability, but is not superior to 201Tl.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N8e5bcc4ba4784f32a80b5e47168a53c0
65 N8ff1e1111e614a8889ce1c8b58c7a4c8
66 sg:journal.1297401
67 schema:name Metabolic myocardial viability assessment with iodine 123-16-iodo-3-methylhexadecanoic acid in recent myocardial infarction: Comparison with thallium-201 and fluorine-18 fluorodeoxyglucose
68 schema:pagination 170-178
69 schema:productId N5e2565c1a3824abe9ad27b066323ed5a
70 N5fa3c57cd4114c11bb62fda0c803f618
71 Nb79a4c176e554a0583541aae285ad41c
72 Nbf84eaf029cf46de84bc8efd77a8781f
73 Ndf8f5637cecd4331a5cce0e7e4fb51c9
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008604505
75 https://doi.org/10.1007/bf02439549
76 schema:sdDatePublished 2019-04-11T13:26
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Ndba4c8f72ab440ca9571a9071d7b43e0
79 schema:url http://link.springer.com/10.1007%2FBF02439549
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1ca5d6813e1b40c79b00b9ec3b11ab39 schema:name Centre d'Exploration et de Recherche Médicale par Emission de Positrons-CERMEP, Lyon, France
84 rdf:type schema:Organization
85 N21f264ee466e45aba90c3c5981ddb83a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Deoxyglucose
87 rdf:type schema:DefinedTerm
88 N268e5c84739a43d58e6b749988632892 rdf:first sg:person.0577012270.46
89 rdf:rest Ne94b2629563745bd9e94cf936b5143a0
90 N49c13fe21c38472692960aa1f7c6009b rdf:first sg:person.051240530.29
91 rdf:rest rdf:nil
92 N5b890054807a4c1da124917f25aec64d rdf:first sg:person.0643421620.75
93 rdf:rest N49c13fe21c38472692960aa1f7c6009b
94 N5e2565c1a3824abe9ad27b066323ed5a schema:name pubmed_id
95 schema:value 9021114
96 rdf:type schema:PropertyValue
97 N5fa3c57cd4114c11bb62fda0c803f618 schema:name readcube_id
98 schema:value 28fe8902462fa9242604061f3b1a8272fcb6f296ed3a6d06713875e663f5b249
99 rdf:type schema:PropertyValue
100 N664baae3fe89461085c525100dd13ed1 schema:name Centre d'Exploration et de Recherche Médicale par Emission de Positrons-CERMEP, Lyon, France
101 rdf:type schema:Organization
102 N6bdb5648cb954e158b474332652b9189 rdf:first sg:person.0633233604.28
103 rdf:rest N268e5c84739a43d58e6b749988632892
104 N70796235acc34662a7c31e68d4ad04ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Palmitic Acids
106 rdf:type schema:DefinedTerm
107 N74f6c6ebec1040a2ac32e353f7144d2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Middle Aged
109 rdf:type schema:DefinedTerm
110 N7a9ed0ceaec44c0bb4bb5d4a6c69749c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Exercise Test
112 rdf:type schema:DefinedTerm
113 N88ecc3e6783447d1826e1caa586adfcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Fluorodeoxyglucose F18
115 rdf:type schema:DefinedTerm
116 N8d8b65fbf7fa4876b1f8f035f8dd14cd rdf:first sg:person.01271560046.22
117 rdf:rest Nf84211b2636d4c05a8397b1681db4bc7
118 N8e5bcc4ba4784f32a80b5e47168a53c0 schema:volumeNumber 24
119 rdf:type schema:PublicationVolume
120 N8ff1e1111e614a8889ce1c8b58c7a4c8 schema:issueNumber 2
121 rdf:type schema:PublicationIssue
122 N92a4befa9940416799b48b2997b27417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name ROC Curve
124 rdf:type schema:DefinedTerm
125 N94d05a1285b44826b34b506fa2e25aad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Sensitivity and Specificity
127 rdf:type schema:DefinedTerm
128 N990bbb650b9c418783775d52efd2512b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Heart
130 rdf:type schema:DefinedTerm
131 N9f501053f1414684a46aad5e760b46b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Predictive Value of Tests
133 rdf:type schema:DefinedTerm
134 N9ff1053a2f96469ea8db1449e928759e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Fluorine Radioisotopes
136 rdf:type schema:DefinedTerm
137 Nad7586be5ff5453b9dd2ab049aedfe50 schema:name Centre d'Exploration et de Recherche Médicale par Emission de Positrons-CERMEP, Lyon, France
138 rdf:type schema:Organization
139 Nb79a4c176e554a0583541aae285ad41c schema:name nlm_unique_id
140 schema:value 7606882
141 rdf:type schema:PropertyValue
142 Nb97eb3a57faa427aa893131bb5aa186e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Myocardial Infarction
144 rdf:type schema:DefinedTerm
145 Nbf84eaf029cf46de84bc8efd77a8781f schema:name dimensions_id
146 schema:value pub.1008604505
147 rdf:type schema:PropertyValue
148 Nc066e75eb64b4825b114ca8623fdd68b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Humans
150 rdf:type schema:DefinedTerm
151 Ncdcceef7b0d0443191d4bdbb576e27af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Iodine Radioisotopes
153 rdf:type schema:DefinedTerm
154 Nd696d08530fe432eb5711162648c47e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Thallium Radioisotopes
156 rdf:type schema:DefinedTerm
157 Ndba4c8f72ab440ca9571a9071d7b43e0 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 Ndf8f5637cecd4331a5cce0e7e4fb51c9 schema:name doi
160 schema:value 10.1007/bf02439549
161 rdf:type schema:PropertyValue
162 Ne91f8d0ee7cf436cae19f9cba2b84e12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Tomography, Emission-Computed, Single-Photon
164 rdf:type schema:DefinedTerm
165 Ne94b2629563745bd9e94cf936b5143a0 rdf:first sg:person.0106763551.48
166 rdf:rest N8d8b65fbf7fa4876b1f8f035f8dd14cd
167 Ne9f0833e78c547378608399edd7e45e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Tomography, Emission-Computed
169 rdf:type schema:DefinedTerm
170 Nf84211b2636d4c05a8397b1681db4bc7 rdf:first sg:person.01201250513.70
171 rdf:rest N5b890054807a4c1da124917f25aec64d
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
176 schema:name Clinical Sciences
177 rdf:type schema:DefinedTerm
178 sg:journal.1297401 schema:issn 1619-7070
179 1619-7089
180 schema:name European Journal of Nuclear Medicine and Molecular Imaging
181 rdf:type schema:Periodical
182 sg:person.0106763551.48 schema:affiliation https://www.grid.ac/institutes/grid.9621.c
183 schema:familyName Fagret
184 schema:givenName Daniel
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106763551.48
186 rdf:type schema:Person
187 sg:person.01201250513.70 schema:affiliation N1ca5d6813e1b40c79b00b9ec3b11ab39
188 schema:familyName André-Fouet
189 schema:givenName Xavier
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201250513.70
191 rdf:type schema:Person
192 sg:person.01271560046.22 schema:affiliation Nad7586be5ff5453b9dd2ab049aedfe50
193 schema:familyName Cinotti
194 schema:givenName Luc
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271560046.22
196 rdf:type schema:Person
197 sg:person.051240530.29 schema:affiliation https://www.grid.ac/institutes/grid.410529.b
198 schema:familyName Machecourt
199 schema:givenName Jacques
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.051240530.29
201 rdf:type schema:Person
202 sg:person.0577012270.46 schema:affiliation N664baae3fe89461085c525100dd13ed1
203 schema:familyName Janier
204 schema:givenName Marc
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577012270.46
206 rdf:type schema:Person
207 sg:person.0633233604.28 schema:affiliation https://www.grid.ac/institutes/grid.410529.b
208 schema:familyName Vanzetto
209 schema:givenName Gérald
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633233604.28
211 rdf:type schema:Person
212 sg:person.0643421620.75 schema:affiliation https://www.grid.ac/institutes/grid.9621.c
213 schema:familyName Comet
214 schema:givenName Michel
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643421620.75
216 rdf:type schema:Person
217 sg:pub.10.1007/bf00168164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039261088
218 https://doi.org/10.1007/bf00168164
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/bf00251787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018122522
221 https://doi.org/10.1007/bf00251787
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/bf00797906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001767258
224 https://doi.org/10.1007/bf00797906
225 rdf:type schema:CreativeWork
226 sg:pub.10.1016/s1071-3581(95)80020-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032306015
227 https://doi.org/10.1016/s1071-3581(95)80020-4
228 rdf:type schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1077003842 schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1077107029 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1078046730 schema:CreativeWork
232 https://app.dimensions.ai/details/publication/pub.1078482899 schema:CreativeWork
233 https://app.dimensions.ai/details/publication/pub.1079720361 schema:CreativeWork
234 https://app.dimensions.ai/details/publication/pub.1082375133 schema:CreativeWork
235 https://app.dimensions.ai/details/publication/pub.1082453722 schema:CreativeWork
236 https://app.dimensions.ai/details/publication/pub.1082499772 schema:CreativeWork
237 https://app.dimensions.ai/details/publication/pub.1082526440 schema:CreativeWork
238 https://app.dimensions.ai/details/publication/pub.1082585404 schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1082665381 schema:CreativeWork
240 https://app.dimensions.ai/details/publication/pub.1082675129 schema:CreativeWork
241 https://app.dimensions.ai/details/publication/pub.1082823947 schema:CreativeWork
242 https://doi.org/10.1016/0002-8703(94)90545-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052800500
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/0002-9149(83)90394-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053013835
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/0002-9149(87)90975-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041606958
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/0002-9149(89)90832-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038736559
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/0002-9149(92)90782-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1004268736
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/0002-9149(94)90327-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053381670
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/0033-0620(81)90019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016477970
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/0735-1097(92)90008-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1017402778
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/0735-1097(93)90407-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1004462611
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/0735-1097(93)90582-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1027016951
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/0735-1097(93)90586-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1001591509
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0735-1097(83)80194-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014285158
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm198604033141405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034880902
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1056/nejm199007193230301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036683646
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1056/nejm199311253292204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019874241
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1148/radiology.148.3.6878708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082007470
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1161/01.cir.83.1.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771481
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1161/01.cir.90.6.2687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049681851
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1161/01.cir.91.4.1006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336044
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1161/01.cir.92.10.2790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336279
283 rdf:type schema:CreativeWork
284 https://www.grid.ac/institutes/grid.410529.b schema:alternateName Centre Hospitalier Universitaire de Grenoble
285 schema:name Clinique Cardiologique, Centre Hospitalier Universitaire, Univeristé de Grenoble, Grenoble, France
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.9621.c schema:alternateName Joseph Fourier University
288 schema:name Laboratoire d'Etude des Radiopharmaceutiques URA CNRS 1287-Université de Grenoble, Grenoble, France
289 Service de Médecine Nucléaire, Centre Hospitalier Universitaire, Université de Grenoble, BP 217 X, 38043 Cedex 09, Grenoble, France
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...