Error estimates and condition numbers for radial basis function interpolation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-04

AUTHORS

Robert Schaback

ABSTRACT

For interpolation of scattered multivariate data by radial basis functions, an “uncertainty relation” between the attainable error and the condition of the interpolation matrices is proven. It states that the error and the condition number cannot both be kept small. Bounds on the Lebesgue constants are obtained as a byproduct. A variation of the Narcowich-Ward theory of upper bounds on the norm of the inverse of the interpolation matrix is presented in order to handle the whole set of radial basis functions that are currently in use. More... »

PAGES

251-264

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02432002

DOI

http://dx.doi.org/10.1007/bf02432002

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020684639


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Numerische und Angewandte Mathematik, Universit\u00e4t G\u00f6ttingen, D-37083, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaback", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9045(92)90064-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001890880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5685-0_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003645450", 
          "https://doi.org/10.1007/978-3-0348-5685-0_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8396(90)90021-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003727065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01385520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006437167", 
          "https://doi.org/10.1007/bf01385520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/169728.169726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007855290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0427(90)90192-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010564328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9045(92)90058-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012351752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9045(92)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012718459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/214408.214424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013388589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9045(91)90087-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013533331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321784.321786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022931054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(92)90170-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023217061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01934091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023443997", 
          "https://doi.org/10.1007/bf01934091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(80)90013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(80)90013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9045(73)90029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026867108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(81)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033860073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(81)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033860073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01888150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034477275", 
          "https://doi.org/10.1007/bf01888150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01888150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034477275", 
          "https://doi.org/10.1007/bf01888150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/210232.210242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035364464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02145751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039926190", 
          "https://doi.org/10.1007/bf02145751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02145751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039926190", 
          "https://doi.org/10.1007/bf02145751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01203461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040624917", 
          "https://doi.org/10.1007/bf01203461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01203461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040624917", 
          "https://doi.org/10.1007/bf01203461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-438660-0.50054-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041416493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-438660-0.50059-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048000676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01889598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051412376", 
          "https://doi.org/10.1007/bf01889598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01889598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051412376", 
          "https://doi.org/10.1007/bf01889598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jath.1994.1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052983706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(86)90077-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053041329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100071814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053932341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100071814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053932341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(83)90015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/13.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059688637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/8.3.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0522089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0523058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0523059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479892225336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814503754_0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096098914"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-04", 
    "datePublishedReg": "1995-04-01", 
    "description": "For interpolation of scattered multivariate data by radial basis functions, an \u201cuncertainty relation\u201d between the attainable error and the condition of the interpolation matrices is proven. It states that the error and the condition number cannot both be kept small. Bounds on the Lebesgue constants are obtained as a byproduct. A variation of the Narcowich-Ward theory of upper bounds on the norm of the inverse of the interpolation matrix is presented in order to handle the whole set of radial basis functions that are currently in use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02432002", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045108", 
        "issn": [
          "1019-7168", 
          "1572-9044"
        ], 
        "name": "Advances in Computational Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Error estimates and condition numbers for radial basis function interpolation", 
    "pagination": "251-264", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "628e59637490f207689e1ffb6d98e670ffc9697d871405bcc18eb35a2c8d0dc2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02432002"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020684639"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02432002", 
      "https://app.dimensions.ai/details/publication/pub.1020684639"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02432002"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02432002'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02432002'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02432002'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02432002'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02432002 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nd83c3ab315964834b8417866642eefe4
4 schema:citation sg:pub.10.1007/978-3-0348-5685-0_17
5 sg:pub.10.1007/bf01203461
6 sg:pub.10.1007/bf01385520
7 sg:pub.10.1007/bf01888150
8 sg:pub.10.1007/bf01889598
9 sg:pub.10.1007/bf01934091
10 sg:pub.10.1007/bf02145751
11 https://doi.org/10.1006/jath.1994.1130
12 https://doi.org/10.1016/0021-9045(73)90029-4
13 https://doi.org/10.1016/0021-9045(91)90087-q
14 https://doi.org/10.1016/0021-9045(92)90050-x
15 https://doi.org/10.1016/0021-9045(92)90058-v
16 https://doi.org/10.1016/0021-9045(92)90064-u
17 https://doi.org/10.1016/0022-247x(86)90077-6
18 https://doi.org/10.1016/0024-3795(83)90015-0
19 https://doi.org/10.1016/0167-8396(90)90021-i
20 https://doi.org/10.1016/0377-0427(90)90192-3
21 https://doi.org/10.1016/0771-050x(80)90013-3
22 https://doi.org/10.1016/0771-050x(81)90010-3
23 https://doi.org/10.1016/0898-1221(92)90170-m
24 https://doi.org/10.1016/b978-0-12-438660-0.50054-6
25 https://doi.org/10.1016/b978-0-12-438660-0.50059-5
26 https://doi.org/10.1017/s0305004100071814
27 https://doi.org/10.1093/imanum/13.1.13
28 https://doi.org/10.1093/imanum/8.3.305
29 https://doi.org/10.1137/0522089
30 https://doi.org/10.1137/0523058
31 https://doi.org/10.1137/0523059
32 https://doi.org/10.1137/s0895479892225336
33 https://doi.org/10.1142/9789814503754_0018
34 https://doi.org/10.1145/169728.169726
35 https://doi.org/10.1145/210232.210242
36 https://doi.org/10.1145/214408.214424
37 https://doi.org/10.1145/321784.321786
38 schema:datePublished 1995-04
39 schema:datePublishedReg 1995-04-01
40 schema:description For interpolation of scattered multivariate data by radial basis functions, an “uncertainty relation” between the attainable error and the condition of the interpolation matrices is proven. It states that the error and the condition number cannot both be kept small. Bounds on the Lebesgue constants are obtained as a byproduct. A variation of the Narcowich-Ward theory of upper bounds on the norm of the inverse of the interpolation matrix is presented in order to handle the whole set of radial basis functions that are currently in use.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N236a7f51de3d49f480d1045cd067cf62
45 Ndb3f3c5d700b41349160c36e739f507a
46 sg:journal.1045108
47 schema:name Error estimates and condition numbers for radial basis function interpolation
48 schema:pagination 251-264
49 schema:productId N1b25b196a1354e2480aa380c26d10205
50 N4487193be553450d8815846a2e2b8d9c
51 Nef6a2aa24b204b16a5088d8142e3d7a5
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684639
53 https://doi.org/10.1007/bf02432002
54 schema:sdDatePublished 2019-04-10T21:35
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb13cf79a15e74c76acb35b0a4097c5ac
57 schema:url http://link.springer.com/10.1007%2FBF02432002
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1b25b196a1354e2480aa380c26d10205 schema:name doi
62 schema:value 10.1007/bf02432002
63 rdf:type schema:PropertyValue
64 N236a7f51de3d49f480d1045cd067cf62 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 N4487193be553450d8815846a2e2b8d9c schema:name readcube_id
67 schema:value 628e59637490f207689e1ffb6d98e670ffc9697d871405bcc18eb35a2c8d0dc2
68 rdf:type schema:PropertyValue
69 Nb13cf79a15e74c76acb35b0a4097c5ac schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nd83c3ab315964834b8417866642eefe4 rdf:first Ne0f4fd04ff1f4a20b3e6a1abc1fa0fcc
72 rdf:rest rdf:nil
73 Ndb3f3c5d700b41349160c36e739f507a schema:volumeNumber 3
74 rdf:type schema:PublicationVolume
75 Ndf9316a015f14bc0b13b1b7dc835d433 schema:name Institut für Numerische und Angewandte Mathematik, Universität Göttingen, D-37083, Göttingen, Germany
76 rdf:type schema:Organization
77 Ne0f4fd04ff1f4a20b3e6a1abc1fa0fcc schema:affiliation Ndf9316a015f14bc0b13b1b7dc835d433
78 schema:familyName Schaback
79 schema:givenName Robert
80 rdf:type schema:Person
81 Nef6a2aa24b204b16a5088d8142e3d7a5 schema:name dimensions_id
82 schema:value pub.1020684639
83 rdf:type schema:PropertyValue
84 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
85 schema:name Biological Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
88 schema:name Genetics
89 rdf:type schema:DefinedTerm
90 sg:journal.1045108 schema:issn 1019-7168
91 1572-9044
92 schema:name Advances in Computational Mathematics
93 rdf:type schema:Periodical
94 sg:pub.10.1007/978-3-0348-5685-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003645450
95 https://doi.org/10.1007/978-3-0348-5685-0_17
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01203461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040624917
98 https://doi.org/10.1007/bf01203461
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01385520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006437167
101 https://doi.org/10.1007/bf01385520
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01888150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034477275
104 https://doi.org/10.1007/bf01888150
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01889598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051412376
107 https://doi.org/10.1007/bf01889598
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01934091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023443997
110 https://doi.org/10.1007/bf01934091
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02145751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039926190
113 https://doi.org/10.1007/bf02145751
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1006/jath.1994.1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052983706
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0021-9045(73)90029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026867108
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0021-9045(91)90087-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1013533331
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0021-9045(92)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012718459
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0021-9045(92)90058-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1012351752
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0021-9045(92)90064-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1001890880
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0022-247x(86)90077-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053041329
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0024-3795(83)90015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544966
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0167-8396(90)90021-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1003727065
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0377-0427(90)90192-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010564328
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0771-050x(80)90013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024446346
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0771-050x(81)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033860073
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0898-1221(92)90170-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1023217061
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/b978-0-12-438660-0.50054-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041416493
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/b978-0-12-438660-0.50059-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048000676
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1017/s0305004100071814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053932341
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/imanum/13.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059688637
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/imanum/8.3.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689268
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1137/0522089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848389
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1137/0523058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848471
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1137/0523059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848472
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/s0895479892225336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881958
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1142/9789814503754_0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096098914
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/169728.169726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007855290
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/210232.210242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035364464
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/214408.214424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013388589
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/321784.321786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022931054
168 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...