Resistivity relaxation, a new approach to study ionic mobility in perovskite mixed conductors like CaTi0.7Fe0.3O3–δ View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-05

AUTHORS

E. Mashkina, M. Baier, A. Magerl, M. Göbbels, F. Seifert

ABSTRACT

Oxygen transport of mixed ionic-electronic conductors can be measured by a ‘relaxation’ technique that permits to investigate the material dynamic properties with oxygen partial pressure change. However, for materials exhibiting higher electronic conductivity than ionic, the time for conductivity change is controlled by bulk ionic transport and any surface reaction can be neglected. By fitting the experimental relaxation data of CaTi0.7Fe0.3O3–δ composition, the oxidation and reduction kinetics was found to be independent on oxygen partial pressure (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P_{O_2 } $$ \end{document}) and the rate constants were derived therefrom. From a relaxation experiment at a single\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P_{O_2 } $$ \end{document} we therefore obtain both the electronic and ionic contributions to the total conductivity as well as the chemical diffusion coefficient. More... »

PAGES

269-274

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02430388

DOI

http://dx.doi.org/10.1007/bf02430388

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042152202


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Kristallographie und Strukturphysik, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91058, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Lehrstuhl f\u00fcr Kristallographie und Strukturphysik, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mashkina", 
        "givenName": "E.", 
        "id": "sg:person.016366220021.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366220021.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Kristallographie und Strukturphysik, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91058, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Lehrstuhl f\u00fcr Kristallographie und Strukturphysik, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baier", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Kristallographie und Strukturphysik, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91058, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Lehrstuhl f\u00fcr Kristallographie und Strukturphysik, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magerl", 
        "givenName": "A.", 
        "id": "sg:person.01120550476.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120550476.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Mineralogie, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91054, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Lehrstuhl f\u00fcr Mineralogie, Universit\u00e4t Erlangen-N\u00fcrnberg, D-91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6bbels", 
        "givenName": "M.", 
        "id": "sg:person.012443163700.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443163700.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bayerisches Geoinstitut, Universit\u00e4t Bayreuth, D-95440, Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Bayerisches Geoinstitut, Universit\u00e4t Bayreuth, D-95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seifert", 
        "givenName": "F.", 
        "id": "sg:person.010237516623.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237516623.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01204323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000080001", 
          "https://doi.org/10.1007/bf01204323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68312-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002983664", 
          "https://doi.org/10.1007/978-3-642-68312-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02376002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030379636", 
          "https://doi.org/10.1007/bf02376002"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-05", 
    "datePublishedReg": "2005-05-01", 
    "description": "Oxygen transport of mixed ionic-electronic conductors can be measured by a \u2018relaxation\u2019 technique that permits to investigate the material dynamic properties with oxygen partial pressure change. However, for materials exhibiting higher electronic conductivity than ionic, the time for conductivity change is controlled by bulk ionic transport and any surface reaction can be neglected. By fitting the experimental relaxation data of CaTi0.7Fe0.3O3\u2013\u03b4 composition, the oxidation and reduction kinetics was found to be independent on oxygen partial pressure (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$P_{O_2 } $$\n\\end{document}) and the rate constants were derived therefrom. From a relaxation experiment at a single\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$P_{O_2 } $$\n\\end{document} we therefore obtain both the electronic and ionic contributions to the total conductivity as well as the chemical diffusion coefficient.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02430388", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041836", 
        "issn": [
          "0947-7047", 
          "1862-0760"
        ], 
        "name": "Ionics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "mixed ionic-electronic conductors", 
      "ionic-electronic conductors", 
      "high electronic conductivity", 
      "chemical diffusion coefficient", 
      "bulk ionic transport", 
      "electronic conductivity", 
      "surface reactions", 
      "ionic contribution", 
      "ionic transport", 
      "ionic mobility", 
      "reduction kinetics", 
      "total conductivity", 
      "oxygen partial pressure", 
      "rate constants", 
      "partial pressure changes", 
      "diffusion coefficient", 
      "oxygen partial pressure change", 
      "relaxation experiments", 
      "relaxation data", 
      "experimental relaxation data", 
      "partial pressure", 
      "conductivity changes", 
      "conductivity", 
      "dynamic properties", 
      "resistivity relaxation", 
      "oxidation", 
      "material dynamic properties", 
      "reaction", 
      "conductors", 
      "kinetics", 
      "oxygen transport", 
      "constants", 
      "relaxation", 
      "properties", 
      "materials", 
      "composition", 
      "transport", 
      "therefrom", 
      "mobility", 
      "new approach", 
      "technique", 
      "coefficient", 
      "experiments", 
      "pressure", 
      "changes", 
      "contribution", 
      "time", 
      "approach", 
      "data", 
      "pressure changes"
    ], 
    "name": "Resistivity relaxation, a new approach to study ionic mobility in perovskite mixed conductors like CaTi0.7Fe0.3O3\u2013\u03b4", 
    "pagination": "269-274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042152202"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02430388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02430388", 
      "https://app.dimensions.ai/details/publication/pub.1042152202"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_396.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02430388"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02430388'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02430388'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02430388'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02430388'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      22 PREDICATES      79 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02430388 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N79347bb8e71d44448471a11e865ea802
4 schema:citation sg:pub.10.1007/978-3-642-68312-1
5 sg:pub.10.1007/bf01204323
6 sg:pub.10.1007/bf02376002
7 schema:datePublished 2005-05
8 schema:datePublishedReg 2005-05-01
9 schema:description Oxygen transport of mixed ionic-electronic conductors can be measured by a ‘relaxation’ technique that permits to investigate the material dynamic properties with oxygen partial pressure change. However, for materials exhibiting higher electronic conductivity than ionic, the time for conductivity change is controlled by bulk ionic transport and any surface reaction can be neglected. By fitting the experimental relaxation data of CaTi0.7Fe0.3O3–δ composition, the oxidation and reduction kinetics was found to be independent on oxygen partial pressure (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P_{O_2 } $$ \end{document}) and the rate constants were derived therefrom. From a relaxation experiment at a single\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P_{O_2 } $$ \end{document} we therefore obtain both the electronic and ionic contributions to the total conductivity as well as the chemical diffusion coefficient.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N10a112f3bd8649ba8c36dbb3fd358feb
14 Ndeeaa9248a3c469cbc8733a352d67a61
15 sg:journal.1041836
16 schema:keywords approach
17 bulk ionic transport
18 changes
19 chemical diffusion coefficient
20 coefficient
21 composition
22 conductivity
23 conductivity changes
24 conductors
25 constants
26 contribution
27 data
28 diffusion coefficient
29 dynamic properties
30 electronic conductivity
31 experimental relaxation data
32 experiments
33 high electronic conductivity
34 ionic contribution
35 ionic mobility
36 ionic transport
37 ionic-electronic conductors
38 kinetics
39 material dynamic properties
40 materials
41 mixed ionic-electronic conductors
42 mobility
43 new approach
44 oxidation
45 oxygen partial pressure
46 oxygen partial pressure change
47 oxygen transport
48 partial pressure
49 partial pressure changes
50 pressure
51 pressure changes
52 properties
53 rate constants
54 reaction
55 reduction kinetics
56 relaxation
57 relaxation data
58 relaxation experiments
59 resistivity relaxation
60 surface reactions
61 technique
62 therefrom
63 time
64 total conductivity
65 transport
66 schema:name Resistivity relaxation, a new approach to study ionic mobility in perovskite mixed conductors like CaTi0.7Fe0.3O3–δ
67 schema:pagination 269-274
68 schema:productId N8e733903d38d4cfc89a58668adbaf789
69 Ne93e70847b634dabbd04760c413ded53
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042152202
71 https://doi.org/10.1007/bf02430388
72 schema:sdDatePublished 2021-11-01T18:07
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N6ff10c85eee2490b96fd6f04b1f8586a
75 schema:url https://doi.org/10.1007/bf02430388
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N10a112f3bd8649ba8c36dbb3fd358feb schema:issueNumber 3-4
80 rdf:type schema:PublicationIssue
81 N121df0e7c4484d4187969a637596f48a rdf:first sg:person.010237516623.56
82 rdf:rest rdf:nil
83 N45cd9a2633414bb999882e3eb66e2a85 rdf:first sg:person.012443163700.71
84 rdf:rest N121df0e7c4484d4187969a637596f48a
85 N57d257ccf1b04272ac3cf9eed1245afb rdf:first sg:person.01120550476.01
86 rdf:rest N45cd9a2633414bb999882e3eb66e2a85
87 N6ff10c85eee2490b96fd6f04b1f8586a schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N79347bb8e71d44448471a11e865ea802 rdf:first sg:person.016366220021.18
90 rdf:rest Ne50447b5fc5845a3921dd8b509f77b6e
91 N879fc58e01294c2fb6096a7740454688 schema:affiliation grid-institutes:grid.5330.5
92 schema:familyName Baier
93 schema:givenName M.
94 rdf:type schema:Person
95 N8e733903d38d4cfc89a58668adbaf789 schema:name doi
96 schema:value 10.1007/bf02430388
97 rdf:type schema:PropertyValue
98 Ndeeaa9248a3c469cbc8733a352d67a61 schema:volumeNumber 11
99 rdf:type schema:PublicationVolume
100 Ne50447b5fc5845a3921dd8b509f77b6e rdf:first N879fc58e01294c2fb6096a7740454688
101 rdf:rest N57d257ccf1b04272ac3cf9eed1245afb
102 Ne93e70847b634dabbd04760c413ded53 schema:name dimensions_id
103 schema:value pub.1042152202
104 rdf:type schema:PropertyValue
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1041836 schema:issn 0947-7047
112 1862-0760
113 schema:name Ionics
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010237516623.56 schema:affiliation grid-institutes:grid.7384.8
117 schema:familyName Seifert
118 schema:givenName F.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237516623.56
120 rdf:type schema:Person
121 sg:person.01120550476.01 schema:affiliation grid-institutes:grid.5330.5
122 schema:familyName Magerl
123 schema:givenName A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120550476.01
125 rdf:type schema:Person
126 sg:person.012443163700.71 schema:affiliation grid-institutes:grid.5330.5
127 schema:familyName Göbbels
128 schema:givenName M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443163700.71
130 rdf:type schema:Person
131 sg:person.016366220021.18 schema:affiliation grid-institutes:grid.5330.5
132 schema:familyName Mashkina
133 schema:givenName E.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016366220021.18
135 rdf:type schema:Person
136 sg:pub.10.1007/978-3-642-68312-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002983664
137 https://doi.org/10.1007/978-3-642-68312-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf01204323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000080001
140 https://doi.org/10.1007/bf01204323
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf02376002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030379636
143 https://doi.org/10.1007/bf02376002
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.5330.5 schema:alternateName Lehrstuhl für Kristallographie und Strukturphysik, Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
146 Lehrstuhl für Mineralogie, Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
147 schema:name Lehrstuhl für Kristallographie und Strukturphysik, Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
148 Lehrstuhl für Mineralogie, Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
149 rdf:type schema:Organization
150 grid-institutes:grid.7384.8 schema:alternateName Bayerisches Geoinstitut, Universität Bayreuth, D-95440, Bayreuth, Germany
151 schema:name Bayerisches Geoinstitut, Universität Bayreuth, D-95440, Bayreuth, Germany
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...