A hybrid method of attenuation correction for positron emission tomography brain studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

Valentino Bettinardi, Maria Carla Gilardi, Serena Cargnel, Giovanna Rizzo, Mika Teräs, Giuseppe Striano, Ferruccio Fazio

ABSTRACT

A hybrid method for attenuation correction (HAC) in positron emission tomography (PET) brain studies is proposed. The technique requires the acquisition of two short (1 min) transmission scans immediately before or after the emission study, with the patient and the head fixation system in place and after removing the patient from the scanner with the head fixation system alone. The method combines a uniform map of attenuation coefficients for the patient's head with measured attenuation coefficients for the head fixation system to generate a hybrid attenuation map. The HAC method was calibrated on 30 PET cerebral studies for comparison with the conventional measured attenuation correction method by ROI analysis. Average differences of less than 3% were found for cortical and subcortical regions. The HAC technique is particularly suitable in a PET clinical environment, allowing a reduction of the total study time, greater comfort for patients and an increase in patient throughput. More... »

PAGES

1279-1284

References to SciGraph publications

  • 1989-11. Online brain attenuation correction in PET: towards a fully automated data handling in a clinical environment in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1989-11. Measured attenuation correction methods in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02426690

    DOI

    http://dx.doi.org/10.1007/bf02426690

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031221212

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7875164


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Technology, Radiologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bettinardi", 
            "givenName": "Valentino", 
            "id": "sg:person.0621001075.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621001075.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gilardi", 
            "givenName": "Maria Carla", 
            "id": "sg:person.01262435052.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262435052.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cargnel", 
            "givenName": "Serena", 
            "id": "sg:person.01117717147.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117717147.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rizzo", 
            "givenName": "Giovanna", 
            "id": "sg:person.01217512610.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217512610.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ter\u00e4s", 
            "givenName": "Mika", 
            "id": "sg:person.01101061462.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Striano", 
            "givenName": "Giuseppe", 
            "id": "sg:person.01243541626.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243541626.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fazio", 
            "givenName": "Ferruccio", 
            "id": "sg:person.01234705530.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234705530.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00631762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041941366", 
              "https://doi.org/10.1007/bf00631762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00631764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035654586", 
              "https://doi.org/10.1007/bf00631764"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-12", 
        "datePublishedReg": "1994-12-01", 
        "description": "A hybrid method for attenuation correction (HAC) in positron emission tomography (PET) brain studies is proposed. The technique requires the acquisition of two short (1 min) transmission scans immediately before or after the emission study, with the patient and the head fixation system in place and after removing the patient from the scanner with the head fixation system alone. The method combines a uniform map of attenuation coefficients for the patient's head with measured attenuation coefficients for the head fixation system to generate a hybrid attenuation map. The HAC method was calibrated on 30 PET cerebral studies for comparison with the conventional measured attenuation correction method by ROI analysis. Average differences of less than 3% were found for cortical and subcortical regions. The HAC technique is particularly suitable in a PET clinical environment, allowing a reduction of the total study time, greater comfort for patients and an increase in patient throughput.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02426690", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "head fixation system", 
          "fixation system", 
          "positron emission tomography (PET) brain studies", 
          "brain studies", 
          "subcortical regions", 
          "patients", 
          "total study time", 
          "patient's head", 
          "ROI analysis", 
          "cerebral studies", 
          "patient throughput", 
          "attenuation correction", 
          "greater comfort", 
          "clinical environment", 
          "attenuation correction method", 
          "study", 
          "head", 
          "study time", 
          "average difference", 
          "attenuation map", 
          "differences", 
          "increase", 
          "reduction", 
          "correction", 
          "uniform maps", 
          "transmission", 
          "scanner", 
          "method", 
          "comfort", 
          "time", 
          "technique", 
          "comparison", 
          "analysis", 
          "acquisition", 
          "system", 
          "region", 
          "place", 
          "HAC method", 
          "maps", 
          "coefficient", 
          "attenuation coefficient", 
          "environment", 
          "short transmissions", 
          "correction method", 
          "throughput", 
          "emission studies", 
          "hybrid method", 
          "emission tomography (PET) brain studies", 
          "tomography (PET) brain studies", 
          "hybrid attenuation map", 
          "PET cerebral studies", 
          "HAC technique", 
          "PET clinical environment"
        ], 
        "name": "A hybrid method of attenuation correction for positron emission tomography brain studies", 
        "pagination": "1279-1284", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031221212"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02426690"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7875164"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02426690", 
          "https://app.dimensions.ai/details/publication/pub.1031221212"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_244.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02426690"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      22 PREDICATES      88 URIs      78 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02426690 schema:about N20e769de1d5e4c7daf02b092f823708e
    2 N5edf4f1b3c3a44159a5ebca03a260a64
    3 N71877eca4c264a2f83caf1a9e1cbc2f2
    4 N8b36f7995f1c40e58bad798697cd22ca
    5 Nb218f8d7dbae436f94e9138b46510597
    6 Nb9c69923d2204cd3b1fbc8b063e4e9c6
    7 anzsrc-for:11
    8 anzsrc-for:1103
    9 schema:author N7385c68f93474f8b9d3f75d121f3ae21
    10 schema:citation sg:pub.10.1007/bf00631762
    11 sg:pub.10.1007/bf00631764
    12 schema:datePublished 1994-12
    13 schema:datePublishedReg 1994-12-01
    14 schema:description A hybrid method for attenuation correction (HAC) in positron emission tomography (PET) brain studies is proposed. The technique requires the acquisition of two short (1 min) transmission scans immediately before or after the emission study, with the patient and the head fixation system in place and after removing the patient from the scanner with the head fixation system alone. The method combines a uniform map of attenuation coefficients for the patient's head with measured attenuation coefficients for the head fixation system to generate a hybrid attenuation map. The HAC method was calibrated on 30 PET cerebral studies for comparison with the conventional measured attenuation correction method by ROI analysis. Average differences of less than 3% were found for cortical and subcortical regions. The HAC technique is particularly suitable in a PET clinical environment, allowing a reduction of the total study time, greater comfort for patients and an increase in patient throughput.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf Ne780f26d07ff4d7384f7130d548abb1f
    19 Nf410817a4f3e471f829a805b3b3d46cc
    20 sg:journal.1297401
    21 schema:keywords HAC method
    22 HAC technique
    23 PET cerebral studies
    24 PET clinical environment
    25 ROI analysis
    26 acquisition
    27 analysis
    28 attenuation coefficient
    29 attenuation correction
    30 attenuation correction method
    31 attenuation map
    32 average difference
    33 brain studies
    34 cerebral studies
    35 clinical environment
    36 coefficient
    37 comfort
    38 comparison
    39 correction
    40 correction method
    41 differences
    42 emission studies
    43 emission tomography (PET) brain studies
    44 environment
    45 fixation system
    46 greater comfort
    47 head
    48 head fixation system
    49 hybrid attenuation map
    50 hybrid method
    51 increase
    52 maps
    53 method
    54 patient throughput
    55 patient's head
    56 patients
    57 place
    58 positron emission tomography (PET) brain studies
    59 reduction
    60 region
    61 scanner
    62 short transmissions
    63 study
    64 study time
    65 subcortical regions
    66 system
    67 technique
    68 throughput
    69 time
    70 tomography (PET) brain studies
    71 total study time
    72 transmission
    73 uniform maps
    74 schema:name A hybrid method of attenuation correction for positron emission tomography brain studies
    75 schema:pagination 1279-1284
    76 schema:productId N0ce0ddb68abc4deb9a1eaf82d0d81cd7
    77 N357852d303ce4934abf161312f5684ec
    78 N45a2a7b7196b4183964bc6543788c40a
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031221212
    80 https://doi.org/10.1007/bf02426690
    81 schema:sdDatePublished 2022-01-01T18:06
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Necacb4ebebf24e6fb18cd03fa3cda293
    84 schema:url https://doi.org/10.1007/bf02426690
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N0ce0ddb68abc4deb9a1eaf82d0d81cd7 schema:name doi
    89 schema:value 10.1007/bf02426690
    90 rdf:type schema:PropertyValue
    91 N16eca66dac6644b2875ba2481d09584f rdf:first sg:person.01217512610.33
    92 rdf:rest Na4670bb8da8d4322908f4a75d9626fb4
    93 N1cfb5ee9388d4dfca0595e221364a6d4 rdf:first sg:person.01243541626.80
    94 rdf:rest Nacc7e9c0730a4d9c9119c2228c2b9323
    95 N20e769de1d5e4c7daf02b092f823708e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Humans
    97 rdf:type schema:DefinedTerm
    98 N2a02289d96ab4513ba3f09386bc46d8f rdf:first sg:person.01262435052.90
    99 rdf:rest N5c5f8e7ccaf842a49e135a7c8969f766
    100 N357852d303ce4934abf161312f5684ec schema:name pubmed_id
    101 schema:value 7875164
    102 rdf:type schema:PropertyValue
    103 N45a2a7b7196b4183964bc6543788c40a schema:name dimensions_id
    104 schema:value pub.1031221212
    105 rdf:type schema:PropertyValue
    106 N5c5f8e7ccaf842a49e135a7c8969f766 rdf:first sg:person.01117717147.25
    107 rdf:rest N16eca66dac6644b2875ba2481d09584f
    108 N5edf4f1b3c3a44159a5ebca03a260a64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Tomography, Emission-Computed
    110 rdf:type schema:DefinedTerm
    111 N71877eca4c264a2f83caf1a9e1cbc2f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Time Factors
    113 rdf:type schema:DefinedTerm
    114 N7385c68f93474f8b9d3f75d121f3ae21 rdf:first sg:person.0621001075.97
    115 rdf:rest N2a02289d96ab4513ba3f09386bc46d8f
    116 N8b36f7995f1c40e58bad798697cd22ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Technology, Radiologic
    118 rdf:type schema:DefinedTerm
    119 Na4670bb8da8d4322908f4a75d9626fb4 rdf:first sg:person.01101061462.02
    120 rdf:rest N1cfb5ee9388d4dfca0595e221364a6d4
    121 Nacc7e9c0730a4d9c9119c2228c2b9323 rdf:first sg:person.01234705530.09
    122 rdf:rest rdf:nil
    123 Nb218f8d7dbae436f94e9138b46510597 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Image Processing, Computer-Assisted
    125 rdf:type schema:DefinedTerm
    126 Nb9c69923d2204cd3b1fbc8b063e4e9c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Brain
    128 rdf:type schema:DefinedTerm
    129 Ne780f26d07ff4d7384f7130d548abb1f schema:issueNumber 12
    130 rdf:type schema:PublicationIssue
    131 Necacb4ebebf24e6fb18cd03fa3cda293 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 Nf410817a4f3e471f829a805b3b3d46cc schema:volumeNumber 21
    134 rdf:type schema:PublicationVolume
    135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Medical and Health Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Clinical Sciences
    140 rdf:type schema:DefinedTerm
    141 sg:journal.1297401 schema:issn 1619-7070
    142 1619-7089
    143 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.01101061462.02 schema:affiliation grid-institutes:grid.1374.1
    147 schema:familyName Teräs
    148 schema:givenName Mika
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02
    150 rdf:type schema:Person
    151 sg:person.01117717147.25 schema:affiliation grid-institutes:None
    152 schema:familyName Cargnel
    153 schema:givenName Serena
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117717147.25
    155 rdf:type schema:Person
    156 sg:person.01217512610.33 schema:affiliation grid-institutes:None
    157 schema:familyName Rizzo
    158 schema:givenName Giovanna
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217512610.33
    160 rdf:type schema:Person
    161 sg:person.01234705530.09 schema:affiliation grid-institutes:None
    162 schema:familyName Fazio
    163 schema:givenName Ferruccio
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234705530.09
    165 rdf:type schema:Person
    166 sg:person.01243541626.80 schema:affiliation grid-institutes:None
    167 schema:familyName Striano
    168 schema:givenName Giuseppe
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243541626.80
    170 rdf:type schema:Person
    171 sg:person.01262435052.90 schema:affiliation grid-institutes:None
    172 schema:familyName Gilardi
    173 schema:givenName Maria Carla
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262435052.90
    175 rdf:type schema:Person
    176 sg:person.0621001075.97 schema:affiliation grid-institutes:None
    177 schema:familyName Bettinardi
    178 schema:givenName Valentino
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621001075.97
    180 rdf:type schema:Person
    181 sg:pub.10.1007/bf00631762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941366
    182 https://doi.org/10.1007/bf00631762
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00631764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035654586
    185 https://doi.org/10.1007/bf00631764
    186 rdf:type schema:CreativeWork
    187 grid-institutes:None schema:alternateName Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy
    188 INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy
    189 schema:name Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy
    190 INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy
    191 rdf:type schema:Organization
    192 grid-institutes:grid.1374.1 schema:alternateName University of Turku, Turku, Finland
    193 schema:name University of Turku, Turku, Finland
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...