A hybrid method of attenuation correction for positron emission tomography brain studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

Valentino Bettinardi, Maria Carla Gilardi, Serena Cargnel, Giovanna Rizzo, Mika Teräs, Giuseppe Striano, Ferruccio Fazio

ABSTRACT

A hybrid method for attenuation correction (HAC) in positron emission tomography (PET) brain studies is proposed. The technique requires the acquisition of two short (1 min) transmission scans immediately before or after the emission study, with the patient and the head fixation system in place and after removing the patient from the scanner with the head fixation system alone. The method combines a uniform map of attenuation coefficients for the patient's head with measured attenuation coefficients for the head fixation system to generate a hybrid attenuation map. The HAC method was calibrated on 30 PET cerebral studies for comparison with the conventional measured attenuation correction method by ROI analysis. Average differences of less than 3% were found for cortical and subcortical regions. The HAC technique is particularly suitable in a PET clinical environment, allowing a reduction of the total study time, greater comfort for patients and an increase in patient throughput. More... »

PAGES

1279-1284

References to SciGraph publications

  • 1989-11. Online brain attenuation correction in PET: towards a fully automated data handling in a clinical environment in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1989-11. Measured attenuation correction methods in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02426690

    DOI

    http://dx.doi.org/10.1007/bf02426690

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031221212

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7875164


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Technology, Radiologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bettinardi", 
            "givenName": "Valentino", 
            "id": "sg:person.0621001075.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621001075.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gilardi", 
            "givenName": "Maria Carla", 
            "id": "sg:person.01262435052.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262435052.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cargnel", 
            "givenName": "Serena", 
            "id": "sg:person.01117717147.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117717147.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rizzo", 
            "givenName": "Giovanna", 
            "id": "sg:person.01217512610.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217512610.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ter\u00e4s", 
            "givenName": "Mika", 
            "id": "sg:person.01101061462.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Striano", 
            "givenName": "Giuseppe", 
            "id": "sg:person.01243541626.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243541626.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fazio", 
            "givenName": "Ferruccio", 
            "id": "sg:person.01234705530.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234705530.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00631762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041941366", 
              "https://doi.org/10.1007/bf00631762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00631764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035654586", 
              "https://doi.org/10.1007/bf00631764"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-12", 
        "datePublishedReg": "1994-12-01", 
        "description": "A hybrid method for attenuation correction (HAC) in positron emission tomography (PET) brain studies is proposed. The technique requires the acquisition of two short (1 min) transmission scans immediately before or after the emission study, with the patient and the head fixation system in place and after removing the patient from the scanner with the head fixation system alone. The method combines a uniform map of attenuation coefficients for the patient's head with measured attenuation coefficients for the head fixation system to generate a hybrid attenuation map. The HAC method was calibrated on 30 PET cerebral studies for comparison with the conventional measured attenuation correction method by ROI analysis. Average differences of less than 3% were found for cortical and subcortical regions. The HAC technique is particularly suitable in a PET clinical environment, allowing a reduction of the total study time, greater comfort for patients and an increase in patient throughput.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02426690", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "head fixation system", 
          "fixation system", 
          "positron emission tomography (PET) brain studies", 
          "brain studies", 
          "subcortical regions", 
          "patients", 
          "total study time", 
          "patient's head", 
          "ROI analysis", 
          "cerebral studies", 
          "patient throughput", 
          "attenuation correction", 
          "greater comfort", 
          "clinical environment", 
          "attenuation correction method", 
          "study", 
          "head", 
          "study time", 
          "average difference", 
          "attenuation map", 
          "differences", 
          "increase", 
          "reduction", 
          "correction", 
          "uniform maps", 
          "transmission", 
          "scanner", 
          "method", 
          "comfort", 
          "time", 
          "technique", 
          "comparison", 
          "analysis", 
          "acquisition", 
          "system", 
          "region", 
          "place", 
          "HAC method", 
          "maps", 
          "coefficient", 
          "attenuation coefficient", 
          "environment", 
          "short transmissions", 
          "correction method", 
          "throughput", 
          "emission studies", 
          "hybrid method", 
          "emission tomography (PET) brain studies", 
          "tomography (PET) brain studies", 
          "hybrid attenuation map", 
          "PET cerebral studies", 
          "HAC technique", 
          "PET clinical environment"
        ], 
        "name": "A hybrid method of attenuation correction for positron emission tomography brain studies", 
        "pagination": "1279-1284", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031221212"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02426690"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7875164"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02426690", 
          "https://app.dimensions.ai/details/publication/pub.1031221212"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_231.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02426690"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02426690'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      22 PREDICATES      88 URIs      78 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02426690 schema:about N5c11b0ff5187440eaf82842954dd4a10
    2 N7d4512f555dc49808bea57e557b55023
    3 N7e62006b79234d17a6eefc4389efd1e6
    4 N994f8f2add534e1daa4c8f461592d48c
    5 Na7110ec800cb40a192064f8ae801407a
    6 Nc5881cb6e0a8464abf55e5c51c0dd7ed
    7 anzsrc-for:11
    8 anzsrc-for:1103
    9 schema:author N7fae66bb485b4becb13e2f3f32101b1f
    10 schema:citation sg:pub.10.1007/bf00631762
    11 sg:pub.10.1007/bf00631764
    12 schema:datePublished 1994-12
    13 schema:datePublishedReg 1994-12-01
    14 schema:description A hybrid method for attenuation correction (HAC) in positron emission tomography (PET) brain studies is proposed. The technique requires the acquisition of two short (1 min) transmission scans immediately before or after the emission study, with the patient and the head fixation system in place and after removing the patient from the scanner with the head fixation system alone. The method combines a uniform map of attenuation coefficients for the patient's head with measured attenuation coefficients for the head fixation system to generate a hybrid attenuation map. The HAC method was calibrated on 30 PET cerebral studies for comparison with the conventional measured attenuation correction method by ROI analysis. Average differences of less than 3% were found for cortical and subcortical regions. The HAC technique is particularly suitable in a PET clinical environment, allowing a reduction of the total study time, greater comfort for patients and an increase in patient throughput.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N205ed456786d4b078a587d914d671a10
    19 Naaa388d9fdbd44b79051094fe06734cb
    20 sg:journal.1297401
    21 schema:keywords HAC method
    22 HAC technique
    23 PET cerebral studies
    24 PET clinical environment
    25 ROI analysis
    26 acquisition
    27 analysis
    28 attenuation coefficient
    29 attenuation correction
    30 attenuation correction method
    31 attenuation map
    32 average difference
    33 brain studies
    34 cerebral studies
    35 clinical environment
    36 coefficient
    37 comfort
    38 comparison
    39 correction
    40 correction method
    41 differences
    42 emission studies
    43 emission tomography (PET) brain studies
    44 environment
    45 fixation system
    46 greater comfort
    47 head
    48 head fixation system
    49 hybrid attenuation map
    50 hybrid method
    51 increase
    52 maps
    53 method
    54 patient throughput
    55 patient's head
    56 patients
    57 place
    58 positron emission tomography (PET) brain studies
    59 reduction
    60 region
    61 scanner
    62 short transmissions
    63 study
    64 study time
    65 subcortical regions
    66 system
    67 technique
    68 throughput
    69 time
    70 tomography (PET) brain studies
    71 total study time
    72 transmission
    73 uniform maps
    74 schema:name A hybrid method of attenuation correction for positron emission tomography brain studies
    75 schema:pagination 1279-1284
    76 schema:productId N71d9ae3833d64ae28f5ae9777568a6f1
    77 Nc5f83f43fb5d429db7d0343770b91ff8
    78 Nc6503de161dc440fac98e4aeffbf6174
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031221212
    80 https://doi.org/10.1007/bf02426690
    81 schema:sdDatePublished 2021-12-01T19:07
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N5e3b219ead124128b3a0c0c43c400796
    84 schema:url https://doi.org/10.1007/bf02426690
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N205ed456786d4b078a587d914d671a10 schema:volumeNumber 21
    89 rdf:type schema:PublicationVolume
    90 N4e749c6f362641e681997835d7352861 rdf:first sg:person.01234705530.09
    91 rdf:rest rdf:nil
    92 N588fdc749a16457bac5b7b7694cf1766 rdf:first sg:person.01243541626.80
    93 rdf:rest N4e749c6f362641e681997835d7352861
    94 N5c11b0ff5187440eaf82842954dd4a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Tomography, Emission-Computed
    96 rdf:type schema:DefinedTerm
    97 N5e3b219ead124128b3a0c0c43c400796 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N71d9ae3833d64ae28f5ae9777568a6f1 schema:name dimensions_id
    100 schema:value pub.1031221212
    101 rdf:type schema:PropertyValue
    102 N7cc2afa6e2f9422c852dbf17cc240ed1 rdf:first sg:person.01262435052.90
    103 rdf:rest Nb29011c5758b4ab2b4b0a17f62219e3b
    104 N7d4512f555dc49808bea57e557b55023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Technology, Radiologic
    106 rdf:type schema:DefinedTerm
    107 N7e62006b79234d17a6eefc4389efd1e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Humans
    109 rdf:type schema:DefinedTerm
    110 N7fae66bb485b4becb13e2f3f32101b1f rdf:first sg:person.0621001075.97
    111 rdf:rest N7cc2afa6e2f9422c852dbf17cc240ed1
    112 N994f8f2add534e1daa4c8f461592d48c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Brain
    114 rdf:type schema:DefinedTerm
    115 Na7110ec800cb40a192064f8ae801407a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Image Processing, Computer-Assisted
    117 rdf:type schema:DefinedTerm
    118 Naaa388d9fdbd44b79051094fe06734cb schema:issueNumber 12
    119 rdf:type schema:PublicationIssue
    120 Nb29011c5758b4ab2b4b0a17f62219e3b rdf:first sg:person.01117717147.25
    121 rdf:rest Nbd82c76a309942e6be16a341db59a102
    122 Nbd82c76a309942e6be16a341db59a102 rdf:first sg:person.01217512610.33
    123 rdf:rest Ncdd35b4c086644e697b6841a264b7acb
    124 Nc5881cb6e0a8464abf55e5c51c0dd7ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Time Factors
    126 rdf:type schema:DefinedTerm
    127 Nc5f83f43fb5d429db7d0343770b91ff8 schema:name doi
    128 schema:value 10.1007/bf02426690
    129 rdf:type schema:PropertyValue
    130 Nc6503de161dc440fac98e4aeffbf6174 schema:name pubmed_id
    131 schema:value 7875164
    132 rdf:type schema:PropertyValue
    133 Ncdd35b4c086644e697b6841a264b7acb rdf:first sg:person.01101061462.02
    134 rdf:rest N588fdc749a16457bac5b7b7694cf1766
    135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Medical and Health Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Clinical Sciences
    140 rdf:type schema:DefinedTerm
    141 sg:journal.1297401 schema:issn 1619-7070
    142 1619-7089
    143 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.01101061462.02 schema:affiliation grid-institutes:grid.1374.1
    147 schema:familyName Teräs
    148 schema:givenName Mika
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02
    150 rdf:type schema:Person
    151 sg:person.01117717147.25 schema:affiliation grid-institutes:None
    152 schema:familyName Cargnel
    153 schema:givenName Serena
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117717147.25
    155 rdf:type schema:Person
    156 sg:person.01217512610.33 schema:affiliation grid-institutes:None
    157 schema:familyName Rizzo
    158 schema:givenName Giovanna
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217512610.33
    160 rdf:type schema:Person
    161 sg:person.01234705530.09 schema:affiliation grid-institutes:None
    162 schema:familyName Fazio
    163 schema:givenName Ferruccio
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234705530.09
    165 rdf:type schema:Person
    166 sg:person.01243541626.80 schema:affiliation grid-institutes:None
    167 schema:familyName Striano
    168 schema:givenName Giuseppe
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243541626.80
    170 rdf:type schema:Person
    171 sg:person.01262435052.90 schema:affiliation grid-institutes:None
    172 schema:familyName Gilardi
    173 schema:givenName Maria Carla
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262435052.90
    175 rdf:type schema:Person
    176 sg:person.0621001075.97 schema:affiliation grid-institutes:None
    177 schema:familyName Bettinardi
    178 schema:givenName Valentino
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621001075.97
    180 rdf:type schema:Person
    181 sg:pub.10.1007/bf00631762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941366
    182 https://doi.org/10.1007/bf00631762
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00631764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035654586
    185 https://doi.org/10.1007/bf00631764
    186 rdf:type schema:CreativeWork
    187 grid-institutes:None schema:alternateName Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy
    188 INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy
    189 schema:name Division of Nuclear Medicine, H. Castelfranco Veneto, Treviso, Italy
    190 INB-CNR, Scientific Institute H San Raffaele, University of Milan, Milan, Italy
    191 rdf:type schema:Organization
    192 grid-institutes:grid.1374.1 schema:alternateName University of Turku, Turku, Finland
    193 schema:name University of Turku, Turku, Finland
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...