The fate of magnetically charged black holes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

Kimyeong Lee, V. P. Nair, Erick J. Weinberg

ABSTRACT

The magnetically charged Reissner-Nordström black hole solutions of Maxwell-Einstein theory cannot evaporate completely, because their Hawking temperature tends to zero as their mass to charge ratio approaches unity. This situation changes when these solutions are considered in the context of a non-Abelian gauge theory containing nonsingular magnetic monopoles. If the horizon is sufficiently small, the Reissner-Nordström solution develops a classical instability and evolves into a new type of magnetically charged black hole solution. The temperature of these new solutions increases monotonically as the horizon contracts, so that there is no obstacle to the complete evaporation of a magnetically charged black hole. More... »

PAGES

1203-1207

References to SciGraph publications

  • 1975-08. Particle creation by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1975-10. Vacuum polarization and the spontaneous loss of charge by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02418208

    DOI

    http://dx.doi.org/10.1007/bf02418208

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013263346


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physics Department, Columbia University, 10027, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Physics Department, Columbia University, 10027, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Kimyeong", 
            "id": "sg:person.014456763201.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456763201.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physics Department, Columbia University, 10027, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Physics Department, Columbia University, 10027, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nair", 
            "givenName": "V. P.", 
            "id": "sg:person.010377747363.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377747363.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences The Institute for Advanced Study, 08540, Princeton, New Jersey, USA", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences The Institute for Advanced Study, 08540, Princeton, New Jersey, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weinberg", 
            "givenName": "Erick J.", 
            "id": "sg:person.013670132232.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670132232.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01609829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030368985", 
              "https://doi.org/10.1007/bf01609829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-12", 
        "datePublishedReg": "1992-12-01", 
        "description": "The magnetically charged Reissner-Nordstr\u00f6m black hole solutions of Maxwell-Einstein theory cannot evaporate completely, because their Hawking temperature tends to zero as their mass to charge ratio approaches unity. This situation changes when these solutions are considered in the context of a non-Abelian gauge theory containing nonsingular magnetic monopoles. If the horizon is sufficiently small, the Reissner-Nordstr\u00f6m solution develops a classical instability and evolves into a new type of magnetically charged black hole solution. The temperature of these new solutions increases monotonically as the horizon contracts, so that there is no obstacle to the complete evaporation of a magnetically charged black hole.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02418208", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052061", 
            "issn": [
              "0001-7701", 
              "1572-9532"
            ], 
            "name": "General Relativity and Gravitation", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "keywords": [
          "black holes", 
          "black hole solutions", 
          "Reissner-Nordstr\u00f6m black hole solutions", 
          "hole solutions", 
          "Maxwell-Einstein theory", 
          "Reissner-Nordstr\u00f6m solution", 
          "magnetic monopoles", 
          "classical instability", 
          "Hawking temperature", 
          "horizon contracts", 
          "non-Abelian gauge theories", 
          "complete evaporation", 
          "holes", 
          "new type", 
          "gauge theory", 
          "monopole", 
          "evaporation", 
          "temperature", 
          "theory", 
          "instability", 
          "evolves", 
          "mass", 
          "unity", 
          "solution", 
          "horizon", 
          "ratio", 
          "new solutions", 
          "types", 
          "situation", 
          "obstacles", 
          "context", 
          "fate", 
          "contracts", 
          "nonsingular magnetic monopoles"
        ], 
        "name": "The fate of magnetically charged black holes", 
        "pagination": "1203-1207", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013263346"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02418208"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02418208", 
          "https://app.dimensions.ai/details/publication/pub.1013263346"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_260.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02418208"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02418208'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02418208'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02418208'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02418208'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      22 PREDICATES      62 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02418208 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Nb42d45b72e1d445ba734772b87ca586e
    4 schema:citation sg:pub.10.1007/bf01609829
    5 sg:pub.10.1007/bf02345020
    6 schema:datePublished 1992-12
    7 schema:datePublishedReg 1992-12-01
    8 schema:description The magnetically charged Reissner-Nordström black hole solutions of Maxwell-Einstein theory cannot evaporate completely, because their Hawking temperature tends to zero as their mass to charge ratio approaches unity. This situation changes when these solutions are considered in the context of a non-Abelian gauge theory containing nonsingular magnetic monopoles. If the horizon is sufficiently small, the Reissner-Nordström solution develops a classical instability and evolves into a new type of magnetically charged black hole solution. The temperature of these new solutions increases monotonically as the horizon contracts, so that there is no obstacle to the complete evaporation of a magnetically charged black hole.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Na60285849f6f4acd88de795759e2f6d0
    13 Ne931bc7e246e41e18676766992c2f712
    14 sg:journal.1052061
    15 schema:keywords Hawking temperature
    16 Maxwell-Einstein theory
    17 Reissner-Nordström black hole solutions
    18 Reissner-Nordström solution
    19 black hole solutions
    20 black holes
    21 classical instability
    22 complete evaporation
    23 context
    24 contracts
    25 evaporation
    26 evolves
    27 fate
    28 gauge theory
    29 hole solutions
    30 holes
    31 horizon
    32 horizon contracts
    33 instability
    34 magnetic monopoles
    35 mass
    36 monopole
    37 new solutions
    38 new type
    39 non-Abelian gauge theories
    40 nonsingular magnetic monopoles
    41 obstacles
    42 ratio
    43 situation
    44 solution
    45 temperature
    46 theory
    47 types
    48 unity
    49 schema:name The fate of magnetically charged black holes
    50 schema:pagination 1203-1207
    51 schema:productId N40aa39fb5fbc4670ba56033d86d3763a
    52 N859d5375038f459091bcad426f999a73
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013263346
    54 https://doi.org/10.1007/bf02418208
    55 schema:sdDatePublished 2021-12-01T19:09
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nbaee01b42be143198d4388daee801f36
    58 schema:url https://doi.org/10.1007/bf02418208
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N40aa39fb5fbc4670ba56033d86d3763a schema:name doi
    63 schema:value 10.1007/bf02418208
    64 rdf:type schema:PropertyValue
    65 N71294274311043408eea6e3a3218110b rdf:first sg:person.013670132232.98
    66 rdf:rest rdf:nil
    67 N859d5375038f459091bcad426f999a73 schema:name dimensions_id
    68 schema:value pub.1013263346
    69 rdf:type schema:PropertyValue
    70 N868b39398c4946fa9956275fefe3f4fa rdf:first sg:person.010377747363.49
    71 rdf:rest N71294274311043408eea6e3a3218110b
    72 Na60285849f6f4acd88de795759e2f6d0 schema:volumeNumber 24
    73 rdf:type schema:PublicationVolume
    74 Nb42d45b72e1d445ba734772b87ca586e rdf:first sg:person.014456763201.13
    75 rdf:rest N868b39398c4946fa9956275fefe3f4fa
    76 Nbaee01b42be143198d4388daee801f36 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Ne931bc7e246e41e18676766992c2f712 schema:issueNumber 12
    79 rdf:type schema:PublicationIssue
    80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Physical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Astronomical and Space Sciences
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1052061 schema:issn 0001-7701
    87 1572-9532
    88 schema:name General Relativity and Gravitation
    89 schema:publisher Springer Nature
    90 rdf:type schema:Periodical
    91 sg:person.010377747363.49 schema:affiliation grid-institutes:grid.21729.3f
    92 schema:familyName Nair
    93 schema:givenName V. P.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377747363.49
    95 rdf:type schema:Person
    96 sg:person.013670132232.98 schema:affiliation grid-institutes:grid.78989.37
    97 schema:familyName Weinberg
    98 schema:givenName Erick J.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670132232.98
    100 rdf:type schema:Person
    101 sg:person.014456763201.13 schema:affiliation grid-institutes:grid.21729.3f
    102 schema:familyName Lee
    103 schema:givenName Kimyeong
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456763201.13
    105 rdf:type schema:Person
    106 sg:pub.10.1007/bf01609829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030368985
    107 https://doi.org/10.1007/bf01609829
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    110 https://doi.org/10.1007/bf02345020
    111 rdf:type schema:CreativeWork
    112 grid-institutes:grid.21729.3f schema:alternateName Physics Department, Columbia University, 10027, New York, New York, USA
    113 schema:name Physics Department, Columbia University, 10027, New York, New York, USA
    114 rdf:type schema:Organization
    115 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences The Institute for Advanced Study, 08540, Princeton, New Jersey, USA
    116 schema:name School of Natural Sciences The Institute for Advanced Study, 08540, Princeton, New Jersey, USA
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...