An analytical short- and long-term memory model of presynaptic plasticity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-08

AUTHORS

P. Ciaccia, D. Maio, G. P. Vacca

ABSTRACT

A mathematical model, called the Learning Gate Model (LGM), that describes phenomena responsible for biological synaptic plasticity, is presented. The functionality of the model are mainly based on the work of Kandel and colleagues on the most elementary forms of learning observed in the Aplysia Californica marine mollusc. In particular, emphasis is placed on the double temporal dynamics of synaptic plasticity and the temporal specificity of classical conditioning. By properly modeling the effect of the binding of Ca++ ions to the serotonin-sensitive adenylate cyclase enzyme, it is shown how a positively accelerated learning curve can be obtained for sensitization and classical conditioning. Phenomena of spontaneous recovery and second-order conditioning are reproduced through simulations. Mathematical analyses of the temporal trace of conditioned stimulus and of the Short-Term Memory steady state are also given. More... »

PAGES

335-345

References to SciGraph publications

  • 1979-09. Small systems of neurons. in SCIENTIFIC AMERICAN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02414889

    DOI

    http://dx.doi.org/10.1007/bf02414889

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002561481

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1515512


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conditioning, Classical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Memory", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Memory, Short-Term", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuronal Plasticity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy", 
              "id": "http://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciaccia", 
            "givenName": "P.", 
            "id": "sg:person.014140067361.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014140067361.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy", 
              "id": "http://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maio", 
            "givenName": "D.", 
            "id": "sg:person.013075040365.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy", 
              "id": "http://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Dipartimento di Elettronica, Informatica e Sistemistica, Universit\u00e0 di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vacca", 
            "givenName": "G. P.", 
            "id": "sg:person.011373206343.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011373206343.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/scientificamerican0979-66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056600720", 
              "https://doi.org/10.1038/scientificamerican0979-66"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-08", 
        "datePublishedReg": "1992-08-01", 
        "description": "A mathematical model, called the Learning Gate Model (LGM), that describes phenomena responsible for biological synaptic plasticity, is presented. The functionality of the model are mainly based on the work of Kandel and colleagues on the most elementary forms of learning observed in the Aplysia Californica marine mollusc. In particular, emphasis is placed on the double temporal dynamics of synaptic plasticity and the temporal specificity of classical conditioning. By properly modeling the effect of the binding of Ca++ ions to the serotonin-sensitive adenylate cyclase enzyme, it is shown how a positively accelerated learning curve can be obtained for sensitization and classical conditioning. Phenomena of spontaneous recovery and second-order conditioning are reproduced through simulations. Mathematical analyses of the temporal trace of conditioned stimulus and of the Short-Term Memory steady state are also given.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02414889", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081741", 
            "issn": [
              "0340-1200", 
              "1432-0770"
            ], 
            "name": "Biological Cybernetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "classical conditioning", 
          "second-order conditioning", 
          "long-term memory model", 
          "biological synaptic plasticity", 
          "memory model", 
          "temporal dynamics", 
          "temporal specificity", 
          "conditioning", 
          "temporal traces", 
          "synaptic plasticity", 
          "spontaneous recovery", 
          "elementary form", 
          "gate model", 
          "stimuli", 
          "mathematical analysis", 
          "mathematical model", 
          "Kandel", 
          "plasticity", 
          "colleagues", 
          "steady state", 
          "model", 
          "phenomenon", 
          "presynaptic plasticity", 
          "emphasis", 
          "dynamics", 
          "simulations", 
          "effect", 
          "traces", 
          "work", 
          "form", 
          "state", 
          "adenylate cyclase enzyme", 
          "analysis", 
          "curves", 
          "specificity", 
          "recovery", 
          "sensitization", 
          "ions", 
          "cyclase enzyme", 
          "functionality", 
          "marine molluscs", 
          "binding", 
          "molluscs", 
          "enzyme"
        ], 
        "name": "An analytical short- and long-term memory model of presynaptic plasticity", 
        "pagination": "335-345", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002561481"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02414889"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1515512"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02414889", 
          "https://app.dimensions.ai/details/publication/pub.1002561481"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_246.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02414889"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02414889'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02414889'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02414889'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02414889'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      21 PREDICATES      79 URIs      70 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02414889 schema:about N38567a14a3b64661b18df8415a63438b
    2 N3860655975bc43e7b5cb91e9c4cc1186
    3 N636b0c2be680442690fea7ab2881de9d
    4 N7888dbca1a414966bd2a071b421384ce
    5 Nc100e0d52fdb4090825f1c34c9cd5ef6
    6 Nc38694791bc44f7fbebb87e9dc8bdf30
    7 Ncdf4e6601bc940e69b3e22996d10af8d
    8 Nd5d45990033e45fd9521a0130a65ed0f
    9 anzsrc-for:17
    10 anzsrc-for:1701
    11 schema:author N08996e2cdb1a4aa0965af0f36bab7086
    12 schema:citation sg:pub.10.1038/scientificamerican0979-66
    13 schema:datePublished 1992-08
    14 schema:datePublishedReg 1992-08-01
    15 schema:description A mathematical model, called the Learning Gate Model (LGM), that describes phenomena responsible for biological synaptic plasticity, is presented. The functionality of the model are mainly based on the work of Kandel and colleagues on the most elementary forms of learning observed in the Aplysia Californica marine mollusc. In particular, emphasis is placed on the double temporal dynamics of synaptic plasticity and the temporal specificity of classical conditioning. By properly modeling the effect of the binding of Ca++ ions to the serotonin-sensitive adenylate cyclase enzyme, it is shown how a positively accelerated learning curve can be obtained for sensitization and classical conditioning. Phenomena of spontaneous recovery and second-order conditioning are reproduced through simulations. Mathematical analyses of the temporal trace of conditioned stimulus and of the Short-Term Memory steady state are also given.
    16 schema:genre article
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N06e4ab47586a402bacc089be9304ac49
    19 Na9bb048fd2c549139b89c8356858ce54
    20 sg:journal.1081741
    21 schema:keywords Kandel
    22 adenylate cyclase enzyme
    23 analysis
    24 binding
    25 biological synaptic plasticity
    26 classical conditioning
    27 colleagues
    28 conditioning
    29 curves
    30 cyclase enzyme
    31 dynamics
    32 effect
    33 elementary form
    34 emphasis
    35 enzyme
    36 form
    37 functionality
    38 gate model
    39 ions
    40 long-term memory model
    41 marine molluscs
    42 mathematical analysis
    43 mathematical model
    44 memory model
    45 model
    46 molluscs
    47 phenomenon
    48 plasticity
    49 presynaptic plasticity
    50 recovery
    51 second-order conditioning
    52 sensitization
    53 simulations
    54 specificity
    55 spontaneous recovery
    56 state
    57 steady state
    58 stimuli
    59 synaptic plasticity
    60 temporal dynamics
    61 temporal specificity
    62 temporal traces
    63 traces
    64 work
    65 schema:name An analytical short- and long-term memory model of presynaptic plasticity
    66 schema:pagination 335-345
    67 schema:productId N0432f30f8867424fa8c7a763abbb8194
    68 N1bfacaed6534458da0fb0b44ee0a796a
    69 N86e7fede1da541688ce5fcfc19585f3b
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002561481
    71 https://doi.org/10.1007/bf02414889
    72 schema:sdDatePublished 2022-11-24T20:47
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N7e5a05a2eec44d80ab001baccb10d915
    75 schema:url https://doi.org/10.1007/bf02414889
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N0432f30f8867424fa8c7a763abbb8194 schema:name dimensions_id
    80 schema:value pub.1002561481
    81 rdf:type schema:PropertyValue
    82 N06e4ab47586a402bacc089be9304ac49 schema:issueNumber 4
    83 rdf:type schema:PublicationIssue
    84 N08996e2cdb1a4aa0965af0f36bab7086 rdf:first sg:person.014140067361.80
    85 rdf:rest N46963490e3564bdcb6dfb5d88afc02f1
    86 N1bfacaed6534458da0fb0b44ee0a796a schema:name doi
    87 schema:value 10.1007/bf02414889
    88 rdf:type schema:PropertyValue
    89 N204e89be2517442fab3f61ded91f62de rdf:first sg:person.011373206343.52
    90 rdf:rest rdf:nil
    91 N38567a14a3b64661b18df8415a63438b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Animals
    93 rdf:type schema:DefinedTerm
    94 N3860655975bc43e7b5cb91e9c4cc1186 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Models, Neurological
    96 rdf:type schema:DefinedTerm
    97 N46963490e3564bdcb6dfb5d88afc02f1 rdf:first sg:person.013075040365.65
    98 rdf:rest N204e89be2517442fab3f61ded91f62de
    99 N636b0c2be680442690fea7ab2881de9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Memory
    101 rdf:type schema:DefinedTerm
    102 N7888dbca1a414966bd2a071b421384ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Memory, Short-Term
    104 rdf:type schema:DefinedTerm
    105 N7e5a05a2eec44d80ab001baccb10d915 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 N86e7fede1da541688ce5fcfc19585f3b schema:name pubmed_id
    108 schema:value 1515512
    109 rdf:type schema:PropertyValue
    110 Na9bb048fd2c549139b89c8356858ce54 schema:volumeNumber 67
    111 rdf:type schema:PublicationVolume
    112 Nc100e0d52fdb4090825f1c34c9cd5ef6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Mathematics
    114 rdf:type schema:DefinedTerm
    115 Nc38694791bc44f7fbebb87e9dc8bdf30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Conditioning, Classical
    117 rdf:type schema:DefinedTerm
    118 Ncdf4e6601bc940e69b3e22996d10af8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Humans
    120 rdf:type schema:DefinedTerm
    121 Nd5d45990033e45fd9521a0130a65ed0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Neuronal Plasticity
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Psychology and Cognitive Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Psychology
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1081741 schema:issn 0340-1200
    131 1432-0770
    132 schema:name Biological Cybernetics
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.011373206343.52 schema:affiliation grid-institutes:grid.6292.f
    136 schema:familyName Vacca
    137 schema:givenName G. P.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011373206343.52
    139 rdf:type schema:Person
    140 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
    141 schema:familyName Maio
    142 schema:givenName D.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
    144 rdf:type schema:Person
    145 sg:person.014140067361.80 schema:affiliation grid-institutes:grid.6292.f
    146 schema:familyName Ciaccia
    147 schema:givenName P.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014140067361.80
    149 rdf:type schema:Person
    150 sg:pub.10.1038/scientificamerican0979-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056600720
    151 https://doi.org/10.1038/scientificamerican0979-66
    152 rdf:type schema:CreativeWork
    153 grid-institutes:grid.6292.f schema:alternateName Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy
    154 schema:name Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna-CIOC-CNR, Viale Risorgimento, 2-I-40136, Bologna, Italy
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...