Singular solutions top-Laplacian type equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-10

AUTHORS

Tero Kilpeläinen

ABSTRACT

We construct singular solutions to equations similar to thep-Laplacian, that tend to ∞ on a given closed set ofp-capacity zero. Moreover, we show that everyGδ-set of vanishingp-capacity is the infinity set of someA-superharmonic function.

PAGES

275-289

References to SciGraph publications

Journal

TITLE

Arkiv för Matematik

ISSUE

2

VOLUME

37

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02412215

DOI

http://dx.doi.org/10.1007/bf02412215

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043866557


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35 (MaD), FI-40351, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilpel\u00e4inen", 
        "givenName": "Tero", 
        "id": "sg:person.011161247457.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02392793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036075514", 
          "https://doi.org/10.1007/bf02392793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02796112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587846", 
          "https://doi.org/10.1007/bf02796112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02796112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587846", 
          "https://doi.org/10.1007/bf02796112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01707623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050964995", 
          "https://doi.org/10.1007/bf01707623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01707623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050964995", 
          "https://doi.org/10.1007/bf01707623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01707623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050964995", 
          "https://doi.org/10.1007/bf01707623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073614034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "We construct singular solutions to equations similar to thep-Laplacian, that tend to \u221e on a given closed set ofp-capacity zero. Moreover, we show that everyG\u03b4-set of vanishingp-capacity is the infinity set of someA-superharmonic function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02412215", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136676", 
        "issn": [
          "0004-2080", 
          "1871-2487"
        ], 
        "name": "Arkiv f\u00f6r Matematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Singular solutions top-Laplacian type equations", 
    "pagination": "275-289", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0f43de9d65e7eecec8eccc8611e1e2c54285934a2b8db566895fb488f9cc543"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02412215"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043866557"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02412215", 
      "https://app.dimensions.ai/details/publication/pub.1043866557"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02412215"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02412215'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02412215'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02412215'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02412215'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02412215 schema:author N0f9d99b7852b4a23a8d766074b694286
2 schema:citation sg:pub.10.1007/bf01707623
3 sg:pub.10.1007/bf02392793
4 sg:pub.10.1007/bf02796112
5 https://doi.org/10.7146/math.scand.a-12229
6 schema:datePublished 1999-10
7 schema:datePublishedReg 1999-10-01
8 schema:description We construct singular solutions to equations similar to thep-Laplacian, that tend to ∞ on a given closed set ofp-capacity zero. Moreover, we show that everyGδ-set of vanishingp-capacity is the infinity set of someA-superharmonic function.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N4fa9824538ee451c97f10a4a87eeafdb
13 Nea8b2b766b6c41f7b44e4f584df320a3
14 sg:journal.1136676
15 schema:name Singular solutions top-Laplacian type equations
16 schema:pagination 275-289
17 schema:productId N4ef95c9c7ca04bb8b1f405e06cbd2b51
18 Nc2e4c22f33264e1884668ace483a8656
19 Ncec032e6f73a40518fbe39d9b0e9562f
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043866557
21 https://doi.org/10.1007/bf02412215
22 schema:sdDatePublished 2019-04-10T19:52
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N01226fccffbd4f3494d9ead0a0371ff7
25 schema:url http://link.springer.com/10.1007/BF02412215
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N01226fccffbd4f3494d9ead0a0371ff7 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N0f9d99b7852b4a23a8d766074b694286 rdf:first sg:person.011161247457.34
32 rdf:rest rdf:nil
33 N4ef95c9c7ca04bb8b1f405e06cbd2b51 schema:name readcube_id
34 schema:value d0f43de9d65e7eecec8eccc8611e1e2c54285934a2b8db566895fb488f9cc543
35 rdf:type schema:PropertyValue
36 N4fa9824538ee451c97f10a4a87eeafdb schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 Nc2e4c22f33264e1884668ace483a8656 schema:name doi
39 schema:value 10.1007/bf02412215
40 rdf:type schema:PropertyValue
41 Ncec032e6f73a40518fbe39d9b0e9562f schema:name dimensions_id
42 schema:value pub.1043866557
43 rdf:type schema:PropertyValue
44 Nea8b2b766b6c41f7b44e4f584df320a3 schema:volumeNumber 37
45 rdf:type schema:PublicationVolume
46 sg:journal.1136676 schema:issn 0004-2080
47 1871-2487
48 schema:name Arkiv för Matematik
49 rdf:type schema:Periodical
50 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
51 schema:familyName Kilpeläinen
52 schema:givenName Tero
53 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
54 rdf:type schema:Person
55 sg:pub.10.1007/bf01707623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050964995
56 https://doi.org/10.1007/bf01707623
57 rdf:type schema:CreativeWork
58 sg:pub.10.1007/bf02392793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036075514
59 https://doi.org/10.1007/bf02392793
60 rdf:type schema:CreativeWork
61 sg:pub.10.1007/bf02796112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587846
62 https://doi.org/10.1007/bf02796112
63 rdf:type schema:CreativeWork
64 https://doi.org/10.7146/math.scand.a-12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614034
65 rdf:type schema:CreativeWork
66 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
67 schema:name Department of Mathematics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40351, Jyväskylä, Finland
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...