Digital speckle correlation for strain measurement by image analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-12

AUTHORS

D. Amodio, G. B. Broggiato, F. Campana, G. M. Newaz

ABSTRACT

This paper is concerned with small strain measurement utilizing the numerical processing of digital images. The proposed method has its theoretical basis in digital signal analysis and, from a methodological point of view, it can be considered as an extension to digital images of the wellknown white light speckle photography technique. That conventional method is based on the analysis of photographic plates that are exposed twice (before and after the specimen deformation) with the image of a random speckle pattern that has been previously printed on the test piece surface. The digital speckle correlation advantages consist of requiring a very simple specimen preparation and, mainly, of allowing the strain field computation just by numerical elaboration of the acquired images. In this paper, the theoretical basis of the technique and some valuable improvements to the known analogous methodologies are presented. Finally, test results for an application of digital speckle correlation are shown and advantages and disadvantages of the technique are elaborated. In addition, further developments in this area are discussed. More... »

PAGES

396-402

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02411344

DOI

http://dx.doi.org/10.1007/bf02411344

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019688959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marche Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.7010.6", 
          "name": [
            "Department of Mechanics, University of Ancona, via Brecce Bianche, 60131, Ancoma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amodio", 
        "givenName": "D.", 
        "id": "sg:person.014603323377.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603323377.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Mechanics and Aeronautics, University of Rome \u201cLa Sapienza\u201d, via Eudossiana, 18-00184, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broggiato", 
        "givenName": "G. B.", 
        "id": "sg:person.013660273703.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660273703.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Mechanics and Aeronautics, University of Rome \u201cLa Sapienza\u201d, via Eudossiana, 18-00184, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campana", 
        "givenName": "F.", 
        "id": "sg:person.016616030751.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616030751.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., 48202, Detroit, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newaz", 
        "givenName": "G. M.", 
        "id": "sg:person.01104265704.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104265704.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0262-8856(83)90064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010786251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(83)90064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010786251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-1305.1995.tb00979.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035834488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02324726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009420", 
          "https://doi.org/10.1007/bf02324726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02324726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009420", 
          "https://doi.org/10.1007/bf02324726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02325092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043758981", 
          "https://doi.org/10.1007/bf02325092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02325092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043758981", 
          "https://doi.org/10.1007/bf02325092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02321405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924313", 
          "https://doi.org/10.1007/bf02321405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02321405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924313", 
          "https://doi.org/10.1007/bf02321405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3735/19/1/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058972822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.32.001839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065107740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.32.002278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065107804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.33.006667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065109365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.33.007461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065109465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511575013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710108"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "This paper is concerned with small strain measurement utilizing the numerical processing of digital images. The proposed method has its theoretical basis in digital signal analysis and, from a methodological point of view, it can be considered as an extension to digital images of the wellknown white light speckle photography technique. That conventional method is based on the analysis of photographic plates that are exposed twice (before and after the specimen deformation) with the image of a random speckle pattern that has been previously printed on the test piece surface. The digital speckle correlation advantages consist of requiring a very simple specimen preparation and, mainly, of allowing the strain field computation just by numerical elaboration of the acquired images. In this paper, the theoretical basis of the technique and some valuable improvements to the known analogous methodologies are presented. Finally, test results for an application of digital speckle correlation are shown and advantages and disadvantages of the technique are elaborated. In addition, further developments in this area are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02411344", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039819", 
        "issn": [
          "0014-4851", 
          "1741-2765"
        ], 
        "name": "Experimental Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Digital speckle correlation for strain measurement by image analysis", 
    "pagination": "396-402", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5dcf5d567072e6129e442e7595b59888e6d697978f9063ebc125294ad869f077"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02411344"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019688959"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02411344", 
      "https://app.dimensions.ai/details/publication/pub.1019688959"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02411344"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02411344 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N870d07b96afc4e1bbba5fd87caa4d01f
4 schema:citation sg:pub.10.1007/bf02321405
5 sg:pub.10.1007/bf02324726
6 sg:pub.10.1007/bf02325092
7 https://doi.org/10.1016/0262-8856(83)90064-1
8 https://doi.org/10.1017/cbo9780511575013
9 https://doi.org/10.1088/0022-3735/19/1/007
10 https://doi.org/10.1111/j.1475-1305.1995.tb00979.x
11 https://doi.org/10.1364/ao.32.001839
12 https://doi.org/10.1364/ao.32.002278
13 https://doi.org/10.1364/ao.33.006667
14 https://doi.org/10.1364/ao.33.007461
15 schema:datePublished 2003-12
16 schema:datePublishedReg 2003-12-01
17 schema:description This paper is concerned with small strain measurement utilizing the numerical processing of digital images. The proposed method has its theoretical basis in digital signal analysis and, from a methodological point of view, it can be considered as an extension to digital images of the wellknown white light speckle photography technique. That conventional method is based on the analysis of photographic plates that are exposed twice (before and after the specimen deformation) with the image of a random speckle pattern that has been previously printed on the test piece surface. The digital speckle correlation advantages consist of requiring a very simple specimen preparation and, mainly, of allowing the strain field computation just by numerical elaboration of the acquired images. In this paper, the theoretical basis of the technique and some valuable improvements to the known analogous methodologies are presented. Finally, test results for an application of digital speckle correlation are shown and advantages and disadvantages of the technique are elaborated. In addition, further developments in this area are discussed.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N33798513311e45a4b2848447433b0238
22 Nb3350ebd88964440aeafe532d30e41fa
23 sg:journal.1039819
24 schema:name Digital speckle correlation for strain measurement by image analysis
25 schema:pagination 396-402
26 schema:productId N5e25f16139d84c9ca8b22fe81631918b
27 N8b7a4c947e7d4158ad3b2b91b9688175
28 Neea2bb6a51054dc6a40e6195a274542e
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019688959
30 https://doi.org/10.1007/bf02411344
31 schema:sdDatePublished 2019-04-11T13:31
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N8ef6195614fa46f8b8d2a18985f8395e
34 schema:url http://link.springer.com/10.1007/BF02411344
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N1d6b3278cc684ef1879d1eaf38279fa6 rdf:first sg:person.01104265704.75
39 rdf:rest rdf:nil
40 N33798513311e45a4b2848447433b0238 schema:volumeNumber 43
41 rdf:type schema:PublicationVolume
42 N5e25f16139d84c9ca8b22fe81631918b schema:name readcube_id
43 schema:value 5dcf5d567072e6129e442e7595b59888e6d697978f9063ebc125294ad869f077
44 rdf:type schema:PropertyValue
45 N658d73f060644dffb9f5820e2af5d94a rdf:first sg:person.016616030751.33
46 rdf:rest N1d6b3278cc684ef1879d1eaf38279fa6
47 N870d07b96afc4e1bbba5fd87caa4d01f rdf:first sg:person.014603323377.65
48 rdf:rest Nbe885e370cf141339b2ad0feda936e89
49 N8b7a4c947e7d4158ad3b2b91b9688175 schema:name dimensions_id
50 schema:value pub.1019688959
51 rdf:type schema:PropertyValue
52 N8ef6195614fa46f8b8d2a18985f8395e schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nb3350ebd88964440aeafe532d30e41fa schema:issueNumber 4
55 rdf:type schema:PublicationIssue
56 Nbe885e370cf141339b2ad0feda936e89 rdf:first sg:person.013660273703.38
57 rdf:rest N658d73f060644dffb9f5820e2af5d94a
58 Neea2bb6a51054dc6a40e6195a274542e schema:name doi
59 schema:value 10.1007/bf02411344
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1039819 schema:issn 0014-4851
68 1741-2765
69 schema:name Experimental Mechanics
70 rdf:type schema:Periodical
71 sg:person.01104265704.75 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
72 schema:familyName Newaz
73 schema:givenName G. M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104265704.75
75 rdf:type schema:Person
76 sg:person.013660273703.38 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
77 schema:familyName Broggiato
78 schema:givenName G. B.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660273703.38
80 rdf:type schema:Person
81 sg:person.014603323377.65 schema:affiliation https://www.grid.ac/institutes/grid.7010.6
82 schema:familyName Amodio
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603323377.65
85 rdf:type schema:Person
86 sg:person.016616030751.33 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
87 schema:familyName Campana
88 schema:givenName F.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616030751.33
90 rdf:type schema:Person
91 sg:pub.10.1007/bf02321405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051924313
92 https://doi.org/10.1007/bf02321405
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02324726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009420
95 https://doi.org/10.1007/bf02324726
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02325092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043758981
98 https://doi.org/10.1007/bf02325092
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0262-8856(83)90064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010786251
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/cbo9780511575013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710108
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0022-3735/19/1/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058972822
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1111/j.1475-1305.1995.tb00979.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035834488
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1364/ao.32.001839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065107740
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1364/ao.32.002278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065107804
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1364/ao.33.006667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065109365
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1364/ao.33.007461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065109465
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.254444.7 schema:alternateName Wayne State University
117 schema:name Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., 48202, Detroit, MI, USA
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.7010.6 schema:alternateName Marche Polytechnic University
120 schema:name Department of Mechanics, University of Ancona, via Brecce Bianche, 60131, Ancoma, Italy
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
123 schema:name Department of Mechanics and Aeronautics, University of Rome “La Sapienza”, via Eudossiana, 18-00184, Rome, Italy
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...