Digital speckle correlation for strain measurement by image analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-12

AUTHORS

D. Amodio, G. B. Broggiato, F. Campana, G. M. Newaz

ABSTRACT

This paper is concerned with small strain measurement utilizing the numerical processing of digital images. The proposed method has its theoretical basis in digital signal analysis and, from a methodological point of view, it can be considered as an extension to digital images of the wellknown white light speckle photography technique. That conventional method is based on the analysis of photographic plates that are exposed twice (before and after the specimen deformation) with the image of a random speckle pattern that has been previously printed on the test piece surface. The digital speckle correlation advantages consist of requiring a very simple specimen preparation and, mainly, of allowing the strain field computation just by numerical elaboration of the acquired images. In this paper, the theoretical basis of the technique and some valuable improvements to the known analogous methodologies are presented. Finally, test results for an application of digital speckle correlation are shown and advantages and disadvantages of the technique are elaborated. In addition, further developments in this area are discussed. More... »

PAGES

396-402

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02411344

DOI

http://dx.doi.org/10.1007/bf02411344

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019688959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marche Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.7010.6", 
          "name": [
            "Department of Mechanics, University of Ancona, via Brecce Bianche, 60131, Ancoma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amodio", 
        "givenName": "D.", 
        "id": "sg:person.014603323377.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603323377.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Mechanics and Aeronautics, University of Rome \u201cLa Sapienza\u201d, via Eudossiana, 18-00184, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broggiato", 
        "givenName": "G. B.", 
        "id": "sg:person.013660273703.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660273703.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Mechanics and Aeronautics, University of Rome \u201cLa Sapienza\u201d, via Eudossiana, 18-00184, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campana", 
        "givenName": "F.", 
        "id": "sg:person.016616030751.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616030751.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., 48202, Detroit, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newaz", 
        "givenName": "G. M.", 
        "id": "sg:person.01104265704.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104265704.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0262-8856(83)90064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010786251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(83)90064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010786251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-1305.1995.tb00979.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035834488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02324726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009420", 
          "https://doi.org/10.1007/bf02324726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02324726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009420", 
          "https://doi.org/10.1007/bf02324726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02325092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043758981", 
          "https://doi.org/10.1007/bf02325092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02325092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043758981", 
          "https://doi.org/10.1007/bf02325092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02321405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924313", 
          "https://doi.org/10.1007/bf02321405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02321405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924313", 
          "https://doi.org/10.1007/bf02321405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3735/19/1/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058972822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.32.001839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065107740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.32.002278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065107804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.33.006667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065109365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.33.007461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065109465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511575013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710108"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "This paper is concerned with small strain measurement utilizing the numerical processing of digital images. The proposed method has its theoretical basis in digital signal analysis and, from a methodological point of view, it can be considered as an extension to digital images of the wellknown white light speckle photography technique. That conventional method is based on the analysis of photographic plates that are exposed twice (before and after the specimen deformation) with the image of a random speckle pattern that has been previously printed on the test piece surface. The digital speckle correlation advantages consist of requiring a very simple specimen preparation and, mainly, of allowing the strain field computation just by numerical elaboration of the acquired images. In this paper, the theoretical basis of the technique and some valuable improvements to the known analogous methodologies are presented. Finally, test results for an application of digital speckle correlation are shown and advantages and disadvantages of the technique are elaborated. In addition, further developments in this area are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02411344", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039819", 
        "issn": [
          "0014-4851", 
          "1741-2765"
        ], 
        "name": "Experimental Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Digital speckle correlation for strain measurement by image analysis", 
    "pagination": "396-402", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5dcf5d567072e6129e442e7595b59888e6d697978f9063ebc125294ad869f077"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02411344"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019688959"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02411344", 
      "https://app.dimensions.ai/details/publication/pub.1019688959"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02411344"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02411344'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02411344 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nca3153efffc541299ce65a8c3fc4f17f
4 schema:citation sg:pub.10.1007/bf02321405
5 sg:pub.10.1007/bf02324726
6 sg:pub.10.1007/bf02325092
7 https://doi.org/10.1016/0262-8856(83)90064-1
8 https://doi.org/10.1017/cbo9780511575013
9 https://doi.org/10.1088/0022-3735/19/1/007
10 https://doi.org/10.1111/j.1475-1305.1995.tb00979.x
11 https://doi.org/10.1364/ao.32.001839
12 https://doi.org/10.1364/ao.32.002278
13 https://doi.org/10.1364/ao.33.006667
14 https://doi.org/10.1364/ao.33.007461
15 schema:datePublished 2003-12
16 schema:datePublishedReg 2003-12-01
17 schema:description This paper is concerned with small strain measurement utilizing the numerical processing of digital images. The proposed method has its theoretical basis in digital signal analysis and, from a methodological point of view, it can be considered as an extension to digital images of the wellknown white light speckle photography technique. That conventional method is based on the analysis of photographic plates that are exposed twice (before and after the specimen deformation) with the image of a random speckle pattern that has been previously printed on the test piece surface. The digital speckle correlation advantages consist of requiring a very simple specimen preparation and, mainly, of allowing the strain field computation just by numerical elaboration of the acquired images. In this paper, the theoretical basis of the technique and some valuable improvements to the known analogous methodologies are presented. Finally, test results for an application of digital speckle correlation are shown and advantages and disadvantages of the technique are elaborated. In addition, further developments in this area are discussed.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N3b614d1889dd420993bbd12c1e6991ed
22 Nf5045cbeecf54fceae4739d3b5be6210
23 sg:journal.1039819
24 schema:name Digital speckle correlation for strain measurement by image analysis
25 schema:pagination 396-402
26 schema:productId N2a813d52c0304384a5b056b6fc79edcc
27 Ncda644a14a2a45019aa981dc400f95f8
28 Nf5fa2834d3f34dc89ec080c0dc1a56a4
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019688959
30 https://doi.org/10.1007/bf02411344
31 schema:sdDatePublished 2019-04-11T13:31
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N021a3faf89aa4061b3f4b251fd4d667a
34 schema:url http://link.springer.com/10.1007/BF02411344
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N021a3faf89aa4061b3f4b251fd4d667a schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N2a813d52c0304384a5b056b6fc79edcc schema:name dimensions_id
41 schema:value pub.1019688959
42 rdf:type schema:PropertyValue
43 N3b40fa953bd84e0782e58991b173cbc4 rdf:first sg:person.013660273703.38
44 rdf:rest N4da433aa6fdf454fa451edc3f80428fa
45 N3b614d1889dd420993bbd12c1e6991ed schema:volumeNumber 43
46 rdf:type schema:PublicationVolume
47 N4da433aa6fdf454fa451edc3f80428fa rdf:first sg:person.016616030751.33
48 rdf:rest N91bf879d1d8a4cc2b9b60bcce5ac74a3
49 N91bf879d1d8a4cc2b9b60bcce5ac74a3 rdf:first sg:person.01104265704.75
50 rdf:rest rdf:nil
51 Nca3153efffc541299ce65a8c3fc4f17f rdf:first sg:person.014603323377.65
52 rdf:rest N3b40fa953bd84e0782e58991b173cbc4
53 Ncda644a14a2a45019aa981dc400f95f8 schema:name readcube_id
54 schema:value 5dcf5d567072e6129e442e7595b59888e6d697978f9063ebc125294ad869f077
55 rdf:type schema:PropertyValue
56 Nf5045cbeecf54fceae4739d3b5be6210 schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 Nf5fa2834d3f34dc89ec080c0dc1a56a4 schema:name doi
59 schema:value 10.1007/bf02411344
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1039819 schema:issn 0014-4851
68 1741-2765
69 schema:name Experimental Mechanics
70 rdf:type schema:Periodical
71 sg:person.01104265704.75 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
72 schema:familyName Newaz
73 schema:givenName G. M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104265704.75
75 rdf:type schema:Person
76 sg:person.013660273703.38 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
77 schema:familyName Broggiato
78 schema:givenName G. B.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660273703.38
80 rdf:type schema:Person
81 sg:person.014603323377.65 schema:affiliation https://www.grid.ac/institutes/grid.7010.6
82 schema:familyName Amodio
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603323377.65
85 rdf:type schema:Person
86 sg:person.016616030751.33 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
87 schema:familyName Campana
88 schema:givenName F.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616030751.33
90 rdf:type schema:Person
91 sg:pub.10.1007/bf02321405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051924313
92 https://doi.org/10.1007/bf02321405
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02324726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009420
95 https://doi.org/10.1007/bf02324726
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02325092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043758981
98 https://doi.org/10.1007/bf02325092
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0262-8856(83)90064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010786251
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/cbo9780511575013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710108
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0022-3735/19/1/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058972822
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1111/j.1475-1305.1995.tb00979.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035834488
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1364/ao.32.001839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065107740
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1364/ao.32.002278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065107804
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1364/ao.33.006667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065109365
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1364/ao.33.007461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065109465
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.254444.7 schema:alternateName Wayne State University
117 schema:name Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., 48202, Detroit, MI, USA
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.7010.6 schema:alternateName Marche Polytechnic University
120 schema:name Department of Mechanics, University of Ancona, via Brecce Bianche, 60131, Ancoma, Italy
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
123 schema:name Department of Mechanics and Aeronautics, University of Rome “La Sapienza”, via Eudossiana, 18-00184, Rome, Italy
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...