Critique of a large-scale organ system model: Guytonian cardiovascular model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-12

AUTHORS

Kiichi Sagawa

ABSTRACT

This paper reviews Guyton's model, which is large not only in the number of its components but also in the time scale that it spans. The evolution of this model is explained in three stages. To explain short-term regulations of cardiac output Guyton started with a drastically simplified model of the entire cardiovascular system, which emphasized the role of blood volume and the vascular capacity. Guyton's group then directed its efforts toward the analysis of long-term regulation of arterial pressure. Two slow-acting mechanisms were added to the model: (1) the marked increase or decrease of urinary output with only slight increase or decrease in arterial pressure (the renal function curve in the Guytonian model), and (2) long-term vascular autoregulation. This second-stage model explained the transient dynamics and steady equilibrium in renal hypertension. The current version of Guyton's model incorporates a variety of additional endocrine and neural mechanisms that parametrically control the renal function curve. The Guytonian model is a unique venture in modern cardiovascular physiology because of its size and the investigators' incessant efforts to test it against the real system behaviors. More... »

PAGES

386-400

References to SciGraph publications

  • 1974-06. Control of cardiac output by regional blood flow distribution in ANNALS OF BIOMEDICAL ENGINEERING
  • 1972-12. Systems analysis of arterial pressure regulation and hypertension in ANNALS OF BIOMEDICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02409323

    DOI

    http://dx.doi.org/10.1007/bf02409323

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027989817

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1221898


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Angiotensin II", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Blood Pressure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiac Output", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiovascular Physiological Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regional Blood Flow", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Renin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Resistance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Venous Pressure", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 21205, Baltimore, Maryland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sagawa", 
            "givenName": "Kiichi", 
            "id": "sg:person.01211411017.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211411017.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1001/jama.1949.02900400005002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003055524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.34.4.549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005037839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02584211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005871440", 
              "https://doi.org/10.1007/bf02584211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02584211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005871440", 
              "https://doi.org/10.1007/bf02584211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.34.5.606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012642864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-8703(64)90308-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015368066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02368487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022877478", 
              "https://doi.org/10.1007/bf02368487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02368487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022877478", 
              "https://doi.org/10.1007/bf02368487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.35.2.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037666119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.ph.34.030172.000305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038297089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.16.2.134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038324052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.34.2.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044357265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physrev.1955.35.1.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076452767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080264462", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-12", 
        "datePublishedReg": "1975-12-01", 
        "description": "This paper reviews Guyton's model, which is large not only in the number of its components but also in the time scale that it spans. The evolution of this model is explained in three stages. To explain short-term regulations of cardiac output Guyton started with a drastically simplified model of the entire cardiovascular system, which emphasized the role of blood volume and the vascular capacity. Guyton's group then directed its efforts toward the analysis of long-term regulation of arterial pressure. Two slow-acting mechanisms were added to the model: (1) the marked increase or decrease of urinary output with only slight increase or decrease in arterial pressure (the renal function curve in the Guytonian model), and (2) long-term vascular autoregulation. This second-stage model explained the transient dynamics and steady equilibrium in renal hypertension. The current version of Guyton's model incorporates a variety of additional endocrine and neural mechanisms that parametrically control the renal function curve. The Guytonian model is a unique venture in modern cardiovascular physiology because of its size and the investigators' incessant efforts to test it against the real system behaviors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02409323", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1087247", 
            "issn": [
              "0145-3068", 
              "1573-9686"
            ], 
            "name": "Annals of Biomedical Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Critique of a large-scale organ system model: Guytonian cardiovascular model", 
        "pagination": "386-400", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8555d2450308679b1a887571b26026191fe93ed3b48dfbe35aaefc5ff772d00e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1221898"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0361512"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02409323"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027989817"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02409323", 
          "https://app.dimensions.ai/details/publication/pub.1027989817"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02409323"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02409323'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02409323'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02409323'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02409323'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      52 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02409323 schema:about N1ea57ca64e5842ecbc0407e6e8b79c55
    2 N5249a301b599497bb36ecf185875f557
    3 N6a436aa59bf740b9a8db95cbf61ad75c
    4 Na1575dadaa2d4260893aa89df01012a7
    5 Na36357a7a87f4cb99dafe320910f9a20
    6 Na493d458fd184df1bfcf06f3bdfbe7f5
    7 Na5997880610e4e5e9161d7c3a6f8c0be
    8 Na678d49562954538b032d64f9418cf36
    9 Nc2ac8a7b9e0449d3a47ddb7a445e1f69
    10 Neeca7c969fea4ff28efa909f27a78847
    11 Nf486191a8ce247ecb49a85236f59442a
    12 anzsrc-for:11
    13 anzsrc-for:1102
    14 schema:author Nc5af63520b384aee8d50e93c2b85e5af
    15 schema:citation sg:pub.10.1007/bf02368487
    16 sg:pub.10.1007/bf02584211
    17 https://app.dimensions.ai/details/publication/pub.1080264462
    18 https://doi.org/10.1001/jama.1949.02900400005002
    19 https://doi.org/10.1016/0002-8703(64)90308-4
    20 https://doi.org/10.1146/annurev.ph.34.030172.000305
    21 https://doi.org/10.1152/physrev.1955.35.1.123
    22 https://doi.org/10.1161/01.res.16.2.134
    23 https://doi.org/10.1161/01.res.34.2.133
    24 https://doi.org/10.1161/01.res.34.4.549
    25 https://doi.org/10.1161/01.res.34.5.606
    26 https://doi.org/10.1161/01.res.35.2.159
    27 schema:datePublished 1975-12
    28 schema:datePublishedReg 1975-12-01
    29 schema:description This paper reviews Guyton's model, which is large not only in the number of its components but also in the time scale that it spans. The evolution of this model is explained in three stages. To explain short-term regulations of cardiac output Guyton started with a drastically simplified model of the entire cardiovascular system, which emphasized the role of blood volume and the vascular capacity. Guyton's group then directed its efforts toward the analysis of long-term regulation of arterial pressure. Two slow-acting mechanisms were added to the model: (1) the marked increase or decrease of urinary output with only slight increase or decrease in arterial pressure (the renal function curve in the Guytonian model), and (2) long-term vascular autoregulation. This second-stage model explained the transient dynamics and steady equilibrium in renal hypertension. The current version of Guyton's model incorporates a variety of additional endocrine and neural mechanisms that parametrically control the renal function curve. The Guytonian model is a unique venture in modern cardiovascular physiology because of its size and the investigators' incessant efforts to test it against the real system behaviors.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N030a56c3b0c7406d9c2263734890d72f
    34 Nb75f0a51880f4253b3d143ec00417648
    35 sg:journal.1087247
    36 schema:name Critique of a large-scale organ system model: Guytonian cardiovascular model
    37 schema:pagination 386-400
    38 schema:productId N0cc8b150d56b472fab3d2500b1ad9175
    39 N87d9eb5f92524715957721691a6769b5
    40 Nb536c1fcb2744191872a5df893608cbc
    41 Nb57371fa88094ae5a6f95f167ff1e6ed
    42 Nc9e0ed87a3dd4c8b89e3bdd2afcbeba6
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027989817
    44 https://doi.org/10.1007/bf02409323
    45 schema:sdDatePublished 2019-04-11T13:34
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N86148c21242242218a13e80ff8879d2e
    48 schema:url http://link.springer.com/10.1007%2FBF02409323
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N030a56c3b0c7406d9c2263734890d72f schema:volumeNumber 3
    53 rdf:type schema:PublicationVolume
    54 N0cc8b150d56b472fab3d2500b1ad9175 schema:name readcube_id
    55 schema:value 8555d2450308679b1a887571b26026191fe93ed3b48dfbe35aaefc5ff772d00e
    56 rdf:type schema:PropertyValue
    57 N1ea57ca64e5842ecbc0407e6e8b79c55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    58 schema:name Humans
    59 rdf:type schema:DefinedTerm
    60 N5249a301b599497bb36ecf185875f557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Models, Biological
    62 rdf:type schema:DefinedTerm
    63 N6a436aa59bf740b9a8db95cbf61ad75c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Angiotensin II
    65 rdf:type schema:DefinedTerm
    66 N86148c21242242218a13e80ff8879d2e schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N87d9eb5f92524715957721691a6769b5 schema:name dimensions_id
    69 schema:value pub.1027989817
    70 rdf:type schema:PropertyValue
    71 Na1575dadaa2d4260893aa89df01012a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Renin
    73 rdf:type schema:DefinedTerm
    74 Na36357a7a87f4cb99dafe320910f9a20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Regional Blood Flow
    76 rdf:type schema:DefinedTerm
    77 Na493d458fd184df1bfcf06f3bdfbe7f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Kidney
    79 rdf:type schema:DefinedTerm
    80 Na5997880610e4e5e9161d7c3a6f8c0be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Venous Pressure
    82 rdf:type schema:DefinedTerm
    83 Na678d49562954538b032d64f9418cf36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Blood Pressure
    85 rdf:type schema:DefinedTerm
    86 Nb536c1fcb2744191872a5df893608cbc schema:name pubmed_id
    87 schema:value 1221898
    88 rdf:type schema:PropertyValue
    89 Nb57371fa88094ae5a6f95f167ff1e6ed schema:name nlm_unique_id
    90 schema:value 0361512
    91 rdf:type schema:PropertyValue
    92 Nb75f0a51880f4253b3d143ec00417648 schema:issueNumber 4
    93 rdf:type schema:PublicationIssue
    94 Nc2ac8a7b9e0449d3a47ddb7a445e1f69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Cardiac Output
    96 rdf:type schema:DefinedTerm
    97 Nc5af63520b384aee8d50e93c2b85e5af rdf:first sg:person.01211411017.43
    98 rdf:rest rdf:nil
    99 Nc9e0ed87a3dd4c8b89e3bdd2afcbeba6 schema:name doi
    100 schema:value 10.1007/bf02409323
    101 rdf:type schema:PropertyValue
    102 Neeca7c969fea4ff28efa909f27a78847 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Vascular Resistance
    104 rdf:type schema:DefinedTerm
    105 Nf486191a8ce247ecb49a85236f59442a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Cardiovascular Physiological Phenomena
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Medical and Health Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Cardiorespiratory Medicine and Haematology
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1087247 schema:issn 0145-3068
    115 1573-9686
    116 schema:name Annals of Biomedical Engineering
    117 rdf:type schema:Periodical
    118 sg:person.01211411017.43 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    119 schema:familyName Sagawa
    120 schema:givenName Kiichi
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211411017.43
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf02368487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022877478
    124 https://doi.org/10.1007/bf02368487
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf02584211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005871440
    127 https://doi.org/10.1007/bf02584211
    128 rdf:type schema:CreativeWork
    129 https://app.dimensions.ai/details/publication/pub.1080264462 schema:CreativeWork
    130 https://doi.org/10.1001/jama.1949.02900400005002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003055524
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0002-8703(64)90308-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015368066
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1146/annurev.ph.34.030172.000305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038297089
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1152/physrev.1955.35.1.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076452767
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1161/01.res.16.2.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038324052
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1161/01.res.34.2.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044357265
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1161/01.res.34.4.549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005037839
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1161/01.res.34.5.606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012642864
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1161/01.res.35.2.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037666119
    147 rdf:type schema:CreativeWork
    148 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    149 schema:name Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 21205, Baltimore, Maryland
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...