Thermal decomposition of human tooth enamel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-12

AUTHORS

D. W. Holcomb, R. A. Young

ABSTRACT

Further insight into human tooth enamel, dense fraction (TE), has been obtained by following the change and loss of CO32−, OH−, structurally incorporated H2O, Cl−, and, indirectly, HPO42− after TE had been heated in N2 or vacuum in the range 25–1000°C. Quantitative infrared spectroscopic, lattice parameter, and thermogravimetric measures were used. Loss of the CO32− components begins at much lower temperature (e.g., 100°C) than previously recognized, which has implications for treatments in vitro and possibly in vivo. CO32− in B sites is lost continuously from the outset; the amount in A sites first decreases and then increases above 200° to a maximum at ∼800°C (>10% of the possible A sites filled), where it is responsible for an increase ina lattice parameter. A substantial fraction of the CO32− in B sites moves to A sites before being evolved, apparently via a CO2 intermediary. This implies an interconnectedness of the A and B sites which may be significant in vivo. No loss of Cl− was observed at temperatures below 700–800°C. Structural OH− content increases ∼70% to a maximum near 400°C. Structurally incorporated water is lost continuously up to ∼800°C with a sharp loss at 250–300°C. The “sudden”a lattice parameter contraction, ∼0.014Å, occurs at a kinetics-dependent temperature in the 250–300°C range and is accompanied by reordering and the “sharp” loss of ∼1/3 of the structurally incorporated H2O. The hypothesis that structurally incorporated H2O is the principal cause of the enlargement of thea lattice parameter of TE compared to hydroxyapatite (9.44 vs 9.42Å) is thus allowed by these experimental results. More... »

PAGES

189

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02407181

DOI

http://dx.doi.org/10.1007/bf02407181

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012369431

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6258760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbonates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dental Enamel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diphosphates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrophotometry, Infrared", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Volatilization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "EES and School of Physics Georgia Institute of Technology, 30332, Atlanta, Georgia, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "EES and School of Physics Georgia Institute of Technology, 30332, Atlanta, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holcomb", 
        "givenName": "D. W.", 
        "id": "sg:person.01145171437.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145171437.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EES and School of Physics Georgia Institute of Technology, 30332, Atlanta, Georgia, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "EES and School of Physics Georgia Institute of Technology, 30332, Atlanta, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "R. A.", 
        "id": "sg:person.0752062013.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752062013.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/206403a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013147844", 
          "https://doi.org/10.1038/206403a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02546227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043349380", 
          "https://doi.org/10.1007/bf02546227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02015398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018430166", 
          "https://doi.org/10.1007/bf02015398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02408075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034345162", 
          "https://doi.org/10.1007/bf02408075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02013245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036580541", 
          "https://doi.org/10.1007/bf02013245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/206713a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032762233", 
          "https://doi.org/10.1038/206713a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02062611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026465312", 
          "https://doi.org/10.1007/bf02062611"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-12", 
    "datePublishedReg": "1980-12-01", 
    "description": "Further insight into human tooth enamel, dense fraction (TE), has been obtained by following the change and loss of CO32\u2212, OH\u2212, structurally incorporated H2O, Cl\u2212, and, indirectly, HPO42\u2212 after TE had been heated in N2 or vacuum in the range 25\u20131000\u00b0C. Quantitative infrared spectroscopic, lattice parameter, and thermogravimetric measures were used. Loss of the CO32\u2212 components begins at much lower temperature (e.g., 100\u00b0C) than previously recognized, which has implications for treatments in vitro and possibly in vivo. CO32\u2212 in B sites is lost continuously from the outset; the amount in A sites first decreases and then increases above 200\u00b0 to a maximum at \u223c800\u00b0C (>10% of the possible A sites filled), where it is responsible for an increase ina lattice parameter. A substantial fraction of the CO32\u2212 in B sites moves to A sites before being evolved, apparently via a CO2 intermediary. This implies an interconnectedness of the A and B sites which may be significant in vivo. No loss of Cl\u2212 was observed at temperatures below 700\u2013800\u00b0C. Structural OH\u2212 content increases \u223c70% to a maximum near 400\u00b0C. Structurally incorporated water is lost continuously up to \u223c800\u00b0C with a sharp loss at 250\u2013300\u00b0C. The \u201csudden\u201da lattice parameter contraction, \u223c0.014\u00c5, occurs at a kinetics-dependent temperature in the 250\u2013300\u00b0C range and is accompanied by reordering and the \u201csharp\u201d loss of \u223c1/3 of the structurally incorporated H2O. The hypothesis that structurally incorporated H2O is the principal cause of the enlargement of thea lattice parameter of TE compared to hydroxyapatite (9.44 vs 9.42\u00c5) is thus allowed by these experimental results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02407181", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2489506", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1089641", 
        "issn": [
          "0171-967X", 
          "1432-0827"
        ], 
        "name": "Calcified Tissue International", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "lattice parameters", 
      "B-site", 
      "thermal decomposition", 
      "lattice parameter contraction", 
      "low temperature", 
      "Te", 
      "tooth enamel", 
      "C range", 
      "range 25", 
      "temperature", 
      "experimental results", 
      "human tooth enamel", 
      "content increases", 
      "vacuum", 
      "loss", 
      "vivo", 
      "N2", 
      "substantial fraction", 
      "range", 
      "parameters", 
      "incorporated water", 
      "H2O", 
      "vitro", 
      "sites", 
      "maximum", 
      "decomposition", 
      "amount", 
      "water", 
      "dense fraction", 
      "first decreases", 
      "principal cause", 
      "further insight", 
      "fraction", 
      "results", 
      "components", 
      "sharp loss", 
      "H2O.", 
      "insights", 
      "changes", 
      "implications", 
      "increase", 
      "enamel", 
      "decrease", 
      "treatment", 
      "contraction", 
      "hypothesis", 
      "cause", 
      "enlargement", 
      "measures", 
      "interconnectedness", 
      "intermediaries", 
      "outset"
    ], 
    "name": "Thermal decomposition of human tooth enamel", 
    "pagination": "189", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012369431"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02407181"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6258760"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02407181", 
      "https://app.dimensions.ai/details/publication/pub.1012369431"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_160.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02407181"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02407181'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02407181'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02407181'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02407181'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      99 URIs      80 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02407181 schema:about N47f88bd98dd24e31867bdca5ff7a23d6
2 N515647c5adf64de69297be66dfe91b1e
3 N5feeeae5fcca451eb294133b4ef54855
4 N62449eb22c9e48b89ef3e301901c0e4f
5 N7e5e28ea7f9847ab9f85e30083fdccd3
6 N977a8da7e2f7464d89fcefe5fc108773
7 Na969fe4c22b84f7889ea3c40160e1206
8 Nbe829bb8618c40558689a67256d83707
9 Ndba56921a5b14da6bff86ea0dbb087d7
10 Ne9c9f01f4f8647cbbd6f024ef7cdf176
11 anzsrc-for:06
12 anzsrc-for:0601
13 anzsrc-for:09
14 anzsrc-for:0903
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author Nd3cd235945564724a541c66ea04cca79
18 schema:citation sg:pub.10.1007/bf02013245
19 sg:pub.10.1007/bf02015398
20 sg:pub.10.1007/bf02062611
21 sg:pub.10.1007/bf02408075
22 sg:pub.10.1007/bf02546227
23 sg:pub.10.1038/206403a0
24 sg:pub.10.1038/206713a0
25 schema:datePublished 1980-12
26 schema:datePublishedReg 1980-12-01
27 schema:description Further insight into human tooth enamel, dense fraction (TE), has been obtained by following the change and loss of CO32−, OH−, structurally incorporated H2O, Cl−, and, indirectly, HPO42− after TE had been heated in N2 or vacuum in the range 25–1000°C. Quantitative infrared spectroscopic, lattice parameter, and thermogravimetric measures were used. Loss of the CO32− components begins at much lower temperature (e.g., 100°C) than previously recognized, which has implications for treatments in vitro and possibly in vivo. CO32− in B sites is lost continuously from the outset; the amount in A sites first decreases and then increases above 200° to a maximum at ∼800°C (>10% of the possible A sites filled), where it is responsible for an increase ina lattice parameter. A substantial fraction of the CO32− in B sites moves to A sites before being evolved, apparently via a CO2 intermediary. This implies an interconnectedness of the A and B sites which may be significant in vivo. No loss of Cl− was observed at temperatures below 700–800°C. Structural OH− content increases ∼70% to a maximum near 400°C. Structurally incorporated water is lost continuously up to ∼800°C with a sharp loss at 250–300°C. The “sudden”a lattice parameter contraction, ∼0.014Å, occurs at a kinetics-dependent temperature in the 250–300°C range and is accompanied by reordering and the “sharp” loss of ∼1/3 of the structurally incorporated H2O. The hypothesis that structurally incorporated H2O is the principal cause of the enlargement of thea lattice parameter of TE compared to hydroxyapatite (9.44 vs 9.42Å) is thus allowed by these experimental results.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N5c4f1915ed484cdd86b0863ab77acdbf
31 Ne60727637d024be69dce478129e96229
32 sg:journal.1089641
33 schema:keywords B-site
34 C range
35 H2O
36 H2O.
37 N2
38 Te
39 amount
40 cause
41 changes
42 components
43 content increases
44 contraction
45 decomposition
46 decrease
47 dense fraction
48 enamel
49 enlargement
50 experimental results
51 first decreases
52 fraction
53 further insight
54 human tooth enamel
55 hypothesis
56 implications
57 incorporated water
58 increase
59 insights
60 interconnectedness
61 intermediaries
62 lattice parameter contraction
63 lattice parameters
64 loss
65 low temperature
66 maximum
67 measures
68 outset
69 parameters
70 principal cause
71 range
72 range 25
73 results
74 sharp loss
75 sites
76 substantial fraction
77 temperature
78 thermal decomposition
79 tooth enamel
80 treatment
81 vacuum
82 vitro
83 vivo
84 water
85 schema:name Thermal decomposition of human tooth enamel
86 schema:pagination 189
87 schema:productId N462781e4d8784a79a8a752695c957e81
88 Na3ad3045350f43ca95bb6d78ed8f7bfb
89 Nf8cc5e3f123a4885b55b12630d5c1fff
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012369431
91 https://doi.org/10.1007/bf02407181
92 schema:sdDatePublished 2022-08-04T16:49
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N42a63135af074c4f9855bbc61dc2271a
95 schema:url https://doi.org/10.1007/bf02407181
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N26e03afdf7814adb9bd25bd4a27f4f19 rdf:first sg:person.0752062013.54
100 rdf:rest rdf:nil
101 N42a63135af074c4f9855bbc61dc2271a schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N462781e4d8784a79a8a752695c957e81 schema:name pubmed_id
104 schema:value 6258760
105 rdf:type schema:PropertyValue
106 N47f88bd98dd24e31867bdca5ff7a23d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Dental Enamel
108 rdf:type schema:DefinedTerm
109 N515647c5adf64de69297be66dfe91b1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Water
111 rdf:type schema:DefinedTerm
112 N5c4f1915ed484cdd86b0863ab77acdbf schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N5feeeae5fcca451eb294133b4ef54855 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Carbon Dioxide
116 rdf:type schema:DefinedTerm
117 N62449eb22c9e48b89ef3e301901c0e4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Volatilization
119 rdf:type schema:DefinedTerm
120 N7e5e28ea7f9847ab9f85e30083fdccd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Carbonates
122 rdf:type schema:DefinedTerm
123 N977a8da7e2f7464d89fcefe5fc108773 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Na3ad3045350f43ca95bb6d78ed8f7bfb schema:name doi
127 schema:value 10.1007/bf02407181
128 rdf:type schema:PropertyValue
129 Na969fe4c22b84f7889ea3c40160e1206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Spectrophotometry, Infrared
131 rdf:type schema:DefinedTerm
132 Nbe829bb8618c40558689a67256d83707 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Diphosphates
134 rdf:type schema:DefinedTerm
135 Nd3cd235945564724a541c66ea04cca79 rdf:first sg:person.01145171437.40
136 rdf:rest N26e03afdf7814adb9bd25bd4a27f4f19
137 Ndba56921a5b14da6bff86ea0dbb087d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Hot Temperature
139 rdf:type schema:DefinedTerm
140 Ne60727637d024be69dce478129e96229 schema:volumeNumber 31
141 rdf:type schema:PublicationVolume
142 Ne9c9f01f4f8647cbbd6f024ef7cdf176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Chlorides
144 rdf:type schema:DefinedTerm
145 Nf8cc5e3f123a4885b55b12630d5c1fff schema:name dimensions_id
146 schema:value pub.1012369431
147 rdf:type schema:PropertyValue
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
152 schema:name Biochemistry and Cell Biology
153 rdf:type schema:DefinedTerm
154 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
155 schema:name Engineering
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
158 schema:name Biomedical Engineering
159 rdf:type schema:DefinedTerm
160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical and Health Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
164 schema:name Clinical Sciences
165 rdf:type schema:DefinedTerm
166 sg:grant.2489506 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02407181
167 rdf:type schema:MonetaryGrant
168 sg:journal.1089641 schema:issn 0171-967X
169 1432-0827
170 schema:name Calcified Tissue International
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01145171437.40 schema:affiliation grid-institutes:grid.213917.f
174 schema:familyName Holcomb
175 schema:givenName D. W.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145171437.40
177 rdf:type schema:Person
178 sg:person.0752062013.54 schema:affiliation grid-institutes:grid.213917.f
179 schema:familyName Young
180 schema:givenName R. A.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752062013.54
182 rdf:type schema:Person
183 sg:pub.10.1007/bf02013245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036580541
184 https://doi.org/10.1007/bf02013245
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/bf02015398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018430166
187 https://doi.org/10.1007/bf02015398
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/bf02062611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465312
190 https://doi.org/10.1007/bf02062611
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/bf02408075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034345162
193 https://doi.org/10.1007/bf02408075
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf02546227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043349380
196 https://doi.org/10.1007/bf02546227
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/206403a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013147844
199 https://doi.org/10.1038/206403a0
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/206713a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032762233
202 https://doi.org/10.1038/206713a0
203 rdf:type schema:CreativeWork
204 grid-institutes:grid.213917.f schema:alternateName EES and School of Physics Georgia Institute of Technology, 30332, Atlanta, Georgia, USA
205 schema:name EES and School of Physics Georgia Institute of Technology, 30332, Atlanta, Georgia, USA
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...