Microstructural aspects of fabricating bodies by self-propagating synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-12

AUTHORS

R. W. Rice

ABSTRACT

Existing data on effects of reactant compact microstructure on self-propagating synthesis, SPS type reactions is reviewed. Propagation rates generally decrease with increased compact density at higher densities, and reactions are no longer ignitable at high densities. At lower densities the trends may vary depending on the reactions. Propagation rates and ignitability also generally decrease with increasing particle size, and can be affected by particle shape. More exothermic reactions lead to greater expansion, hence porosity, in unconstrained samples, while resultant pore sizes are effected mainly by outgassing. Final grain sizes are not a significant function of the initial particle size (but can be effected by finer residual porosity). More... »

PAGES

6533-6541

References to SciGraph publications

  • 1986-04. Self-propagating high-temperature synthesis of the SiC in JOURNAL OF MATERIALS RESEARCH
  • 1979-01. Some principles of combustion of titanium-silicon mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1986-01. Combustion synthesis of titanium carbide: Theory and experiment in JOURNAL OF MATERIALS SCIENCE
  • 1984. Processing of Advanced Ceramic Composites in MRS ADVANCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02402643

    DOI

    http://dx.doi.org/10.1007/bf02402643

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013396605


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "W. R. Grace and Co.-Conn., 7379 Route 32, 21044, Columbia, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.471193.9", 
              "name": [
                "W. R. Grace and Co.-Conn., 7379 Route 32, 21044, Columbia, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rice", 
            "givenName": "R. W.", 
            "id": "sg:person.011304455553.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304455553.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1557/proc-32-337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067926482", 
              "https://doi.org/10.1557/proc-32-337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1986.0275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001415915", 
              "https://doi.org/10.1557/jmr.1986.0275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00785326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046839018", 
              "https://doi.org/10.1007/bf00785326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01144729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001356921", 
              "https://doi.org/10.1007/bf01144729"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-12", 
        "datePublishedReg": "1991-12-01", 
        "description": "Existing data on effects of reactant compact microstructure on self-propagating synthesis, SPS type reactions is reviewed. Propagation rates generally decrease with increased compact density at higher densities, and reactions are no longer ignitable at high densities. At lower densities the trends may vary depending on the reactions. Propagation rates and ignitability also generally decrease with increasing particle size, and can be affected by particle shape. More exothermic reactions lead to greater expansion, hence porosity, in unconstrained samples, while resultant pore sizes are effected mainly by outgassing. Final grain sizes are not a significant function of the initial particle size (but can be effected by finer residual porosity).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02402643", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1312116", 
            "issn": [
              "0022-2461", 
              "1573-4811"
            ], 
            "name": "Journal of Materials Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "24", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "grain size", 
          "data", 
          "self-propagating synthesis", 
          "propagation rate", 
          "rate", 
          "density", 
          "high density", 
          "trends", 
          "particle size", 
          "size", 
          "particle shape", 
          "great expansion", 
          "porosity", 
          "unconstrained samples", 
          "samples", 
          "final grain size", 
          "initial particle size", 
          "body", 
          "effect", 
          "compact microstructure", 
          "microstructure", 
          "synthesis", 
          "type reaction", 
          "reaction", 
          "compact density", 
          "ignitability", 
          "shape", 
          "more exothermic reactions", 
          "exothermic reaction", 
          "expansion", 
          "resultant pore size", 
          "pore size", 
          "significant function", 
          "function", 
          "microstructural aspects", 
          "aspects"
        ], 
        "name": "Microstructural aspects of fabricating bodies by self-propagating synthesis", 
        "pagination": "6533-6541", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013396605"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02402643"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02402643", 
          "https://app.dimensions.ai/details/publication/pub.1013396605"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_254.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02402643"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02402643'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02402643'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02402643'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02402643'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      22 PREDICATES      66 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02402643 schema:about anzsrc-for:03
    2 anzsrc-for:09
    3 schema:author Nfa22b51a2718487b8569236ba070275e
    4 schema:citation sg:pub.10.1007/bf00785326
    5 sg:pub.10.1007/bf01144729
    6 sg:pub.10.1557/jmr.1986.0275
    7 sg:pub.10.1557/proc-32-337
    8 schema:datePublished 1991-12
    9 schema:datePublishedReg 1991-12-01
    10 schema:description Existing data on effects of reactant compact microstructure on self-propagating synthesis, SPS type reactions is reviewed. Propagation rates generally decrease with increased compact density at higher densities, and reactions are no longer ignitable at high densities. At lower densities the trends may vary depending on the reactions. Propagation rates and ignitability also generally decrease with increasing particle size, and can be affected by particle shape. More exothermic reactions lead to greater expansion, hence porosity, in unconstrained samples, while resultant pore sizes are effected mainly by outgassing. Final grain sizes are not a significant function of the initial particle size (but can be effected by finer residual porosity).
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N0485aeb5049a4907acf438c4a3d65a91
    15 Ne6fd56251aff4256b3020bdd7488a09e
    16 sg:journal.1312116
    17 schema:keywords aspects
    18 body
    19 compact density
    20 compact microstructure
    21 data
    22 density
    23 effect
    24 exothermic reaction
    25 expansion
    26 final grain size
    27 function
    28 grain size
    29 great expansion
    30 high density
    31 ignitability
    32 initial particle size
    33 microstructural aspects
    34 microstructure
    35 more exothermic reactions
    36 particle shape
    37 particle size
    38 pore size
    39 porosity
    40 propagation rate
    41 rate
    42 reaction
    43 resultant pore size
    44 samples
    45 self-propagating synthesis
    46 shape
    47 significant function
    48 size
    49 synthesis
    50 trends
    51 type reaction
    52 unconstrained samples
    53 schema:name Microstructural aspects of fabricating bodies by self-propagating synthesis
    54 schema:pagination 6533-6541
    55 schema:productId N52e0be52dc9c4d4da8a5ddd37fcec4d6
    56 Ne122c31e286e4f4380c1f4c765ea80b5
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013396605
    58 https://doi.org/10.1007/bf02402643
    59 schema:sdDatePublished 2022-05-20T07:19
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N88f2f3e385b64ecc9902d4ea348606b0
    62 schema:url https://doi.org/10.1007/bf02402643
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N0485aeb5049a4907acf438c4a3d65a91 schema:volumeNumber 26
    67 rdf:type schema:PublicationVolume
    68 N52e0be52dc9c4d4da8a5ddd37fcec4d6 schema:name dimensions_id
    69 schema:value pub.1013396605
    70 rdf:type schema:PropertyValue
    71 N88f2f3e385b64ecc9902d4ea348606b0 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Ne122c31e286e4f4380c1f4c765ea80b5 schema:name doi
    74 schema:value 10.1007/bf02402643
    75 rdf:type schema:PropertyValue
    76 Ne6fd56251aff4256b3020bdd7488a09e schema:issueNumber 24
    77 rdf:type schema:PublicationIssue
    78 Nfa22b51a2718487b8569236ba070275e rdf:first sg:person.011304455553.94
    79 rdf:rest rdf:nil
    80 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Chemical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Engineering
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1312116 schema:issn 0022-2461
    87 1573-4811
    88 schema:name Journal of Materials Science
    89 schema:publisher Springer Nature
    90 rdf:type schema:Periodical
    91 sg:person.011304455553.94 schema:affiliation grid-institutes:grid.471193.9
    92 schema:familyName Rice
    93 schema:givenName R. W.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304455553.94
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf00785326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046839018
    97 https://doi.org/10.1007/bf00785326
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01144729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001356921
    100 https://doi.org/10.1007/bf01144729
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1557/jmr.1986.0275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001415915
    103 https://doi.org/10.1557/jmr.1986.0275
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1557/proc-32-337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067926482
    106 https://doi.org/10.1557/proc-32-337
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.471193.9 schema:alternateName W. R. Grace and Co.-Conn., 7379 Route 32, 21044, Columbia, MD, USA
    109 schema:name W. R. Grace and Co.-Conn., 7379 Route 32, 21044, Columbia, MD, USA
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...