On approximations to generalized Poisson distributions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-02

AUTHORS

V. E. Bening, V. Yu. Korolev, S. Ya. Shorgin

ABSTRACT

In this paper three methods of the construction of approximations to generalized Poisson distributions are considered: approximation by a normal law, approximation by asymptotic distributions, the so-called Robbins mixtures, and approximation with the help of asymptotic expansions. Uniform and (for the first two methods) nonuniform estimates of the accuracy of the corresponding approximations are given. Some estimates for the concentration functions of generalized Poisson distributions are also presented. More... »

PAGES

360-373

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02400920

DOI

http://dx.doi.org/10.1007/bf02400920

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050991119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob\u2019yovy Gory, 119899, Moscow, Russian", 
            "Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bening", 
        "givenName": "V. E.", 
        "id": "sg:person.014065234443.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob\u2019yovy Gory, 119899, Moscow, Russian", 
            "Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "V. Yu.", 
        "id": "sg:person.014166423003.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166423003.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob\u2019yovy Gory, 119899, Moscow, Russian", 
            "Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shorgin", 
        "givenName": "S. Ya.", 
        "id": "sg:person.013217321705.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013217321705.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9904-1948-09142-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002943911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19280080406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023438505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1128010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062867607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-02", 
    "datePublishedReg": "1997-02-01", 
    "description": "In this paper three methods of the construction of approximations to generalized Poisson distributions are considered: approximation by a normal law, approximation by asymptotic distributions, the so-called Robbins mixtures, and approximation with the help of asymptotic expansions. Uniform and (for the first two methods) nonuniform estimates of the accuracy of the corresponding approximations are given. Some estimates for the concentration functions of generalized Poisson distributions are also presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02400920", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "On approximations to generalized Poisson distributions", 
    "pagination": "360-373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2e7546ebe6eb4f2bd56f5423687cd90d67a59e5728c10e10df9f523f1de50f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02400920"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050991119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02400920", 
      "https://app.dimensions.ai/details/publication/pub.1050991119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02400920"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02400920 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0ee280f968eb4771974d0a01703635ec
4 schema:citation sg:pub.10.1007/978-3-642-65809-9
5 https://doi.org/10.1002/zamm.19280080406
6 https://doi.org/10.1090/s0002-9904-1948-09142-x
7 https://doi.org/10.1137/1128010
8 schema:datePublished 1997-02
9 schema:datePublishedReg 1997-02-01
10 schema:description In this paper three methods of the construction of approximations to generalized Poisson distributions are considered: approximation by a normal law, approximation by asymptotic distributions, the so-called Robbins mixtures, and approximation with the help of asymptotic expansions. Uniform and (for the first two methods) nonuniform estimates of the accuracy of the corresponding approximations are given. Some estimates for the concentration functions of generalized Poisson distributions are also presented.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N2a748aa2a24f439684e183ffcb9192f1
15 N495399b6d9d84e9194d63f2a3f6951d0
16 sg:journal.1136516
17 schema:name On approximations to generalized Poisson distributions
18 schema:pagination 360-373
19 schema:productId N190e7a1dafc84b99919802c7994a2166
20 N883fe10b21fb400389a5a53d3320851c
21 N930a5679d9614d0b9d4fc178570c8372
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050991119
23 https://doi.org/10.1007/bf02400920
24 schema:sdDatePublished 2019-04-11T13:29
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N098f4f37cf1745dfbfc03987bd9f3a3a
27 schema:url http://link.springer.com/10.1007%2FBF02400920
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N098f4f37cf1745dfbfc03987bd9f3a3a schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N0ee280f968eb4771974d0a01703635ec rdf:first sg:person.014065234443.39
34 rdf:rest N5820b225ddf04a44ba37a2ae8ffc0f28
35 N1038614d7bcd4b1fb09c4784ec614d49 rdf:first sg:person.013217321705.27
36 rdf:rest rdf:nil
37 N190e7a1dafc84b99919802c7994a2166 schema:name doi
38 schema:value 10.1007/bf02400920
39 rdf:type schema:PropertyValue
40 N2a748aa2a24f439684e183ffcb9192f1 schema:issueNumber 3
41 rdf:type schema:PublicationIssue
42 N495399b6d9d84e9194d63f2a3f6951d0 schema:volumeNumber 83
43 rdf:type schema:PublicationVolume
44 N5820b225ddf04a44ba37a2ae8ffc0f28 rdf:first sg:person.014166423003.73
45 rdf:rest N1038614d7bcd4b1fb09c4784ec614d49
46 N883fe10b21fb400389a5a53d3320851c schema:name dimensions_id
47 schema:value pub.1050991119
48 rdf:type schema:PropertyValue
49 N930a5679d9614d0b9d4fc178570c8372 schema:name readcube_id
50 schema:value f2e7546ebe6eb4f2bd56f5423687cd90d67a59e5728c10e10df9f523f1de50f3
51 rdf:type schema:PropertyValue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
56 schema:name Statistics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136516 schema:issn 1072-3374
59 1573-8795
60 schema:name Journal of Mathematical Sciences
61 rdf:type schema:Periodical
62 sg:person.013217321705.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
63 schema:familyName Shorgin
64 schema:givenName S. Ya.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013217321705.27
66 rdf:type schema:Person
67 sg:person.014065234443.39 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
68 schema:familyName Bening
69 schema:givenName V. E.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39
71 rdf:type schema:Person
72 sg:person.014166423003.73 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
73 schema:familyName Korolev
74 schema:givenName V. Yu.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166423003.73
76 rdf:type schema:Person
77 sg:pub.10.1007/978-3-642-65809-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273926
78 https://doi.org/10.1007/978-3-642-65809-9
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/zamm.19280080406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023438505
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0002-9904-1948-09142-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002943911
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1137/1128010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062867607
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
87 schema:name Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob’yovy Gory, 119899, Moscow, Russian
88 Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...