On approximations to generalized Poisson distributions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-02

AUTHORS

V. E. Bening, V. Yu. Korolev, S. Ya. Shorgin

ABSTRACT

In this paper three methods of the construction of approximations to generalized Poisson distributions are considered: approximation by a normal law, approximation by asymptotic distributions, the so-called Robbins mixtures, and approximation with the help of asymptotic expansions. Uniform and (for the first two methods) nonuniform estimates of the accuracy of the corresponding approximations are given. Some estimates for the concentration functions of generalized Poisson distributions are also presented. More... »

PAGES

360-373

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02400920

DOI

http://dx.doi.org/10.1007/bf02400920

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050991119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob\u2019yovy Gory, 119899, Moscow, Russian", 
            "Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bening", 
        "givenName": "V. E.", 
        "id": "sg:person.014065234443.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob\u2019yovy Gory, 119899, Moscow, Russian", 
            "Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "V. Yu.", 
        "id": "sg:person.014166423003.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166423003.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob\u2019yovy Gory, 119899, Moscow, Russian", 
            "Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shorgin", 
        "givenName": "S. Ya.", 
        "id": "sg:person.013217321705.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013217321705.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9904-1948-09142-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002943911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19280080406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023438505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1128010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062867607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-02", 
    "datePublishedReg": "1997-02-01", 
    "description": "In this paper three methods of the construction of approximations to generalized Poisson distributions are considered: approximation by a normal law, approximation by asymptotic distributions, the so-called Robbins mixtures, and approximation with the help of asymptotic expansions. Uniform and (for the first two methods) nonuniform estimates of the accuracy of the corresponding approximations are given. Some estimates for the concentration functions of generalized Poisson distributions are also presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02400920", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "On approximations to generalized Poisson distributions", 
    "pagination": "360-373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2e7546ebe6eb4f2bd56f5423687cd90d67a59e5728c10e10df9f523f1de50f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02400920"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050991119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02400920", 
      "https://app.dimensions.ai/details/publication/pub.1050991119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02400920"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02400920'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02400920 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9cafded24d3745299b17d00a8df1a242
4 schema:citation sg:pub.10.1007/978-3-642-65809-9
5 https://doi.org/10.1002/zamm.19280080406
6 https://doi.org/10.1090/s0002-9904-1948-09142-x
7 https://doi.org/10.1137/1128010
8 schema:datePublished 1997-02
9 schema:datePublishedReg 1997-02-01
10 schema:description In this paper three methods of the construction of approximations to generalized Poisson distributions are considered: approximation by a normal law, approximation by asymptotic distributions, the so-called Robbins mixtures, and approximation with the help of asymptotic expansions. Uniform and (for the first two methods) nonuniform estimates of the accuracy of the corresponding approximations are given. Some estimates for the concentration functions of generalized Poisson distributions are also presented.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N76693061c1404dbba910131936116d5a
15 N85660a0fb3814bcdb0194ad8903cafd4
16 sg:journal.1136516
17 schema:name On approximations to generalized Poisson distributions
18 schema:pagination 360-373
19 schema:productId N8eaa86c675c1437cb65d19fdf1ca1596
20 Ndc7b3613f05746f5bd8bc919eb1df850
21 Ne1705749009b41c9af89fcf7e8eed49d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050991119
23 https://doi.org/10.1007/bf02400920
24 schema:sdDatePublished 2019-04-11T13:29
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nb83547ce0f484dc18b03a12f548adac3
27 schema:url http://link.springer.com/10.1007%2FBF02400920
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N279ad4acf9ef46019b7479ab756eacdc rdf:first sg:person.014166423003.73
32 rdf:rest Ncfe89acbe17a4fbc9655c763c4a604d0
33 N76693061c1404dbba910131936116d5a schema:volumeNumber 83
34 rdf:type schema:PublicationVolume
35 N85660a0fb3814bcdb0194ad8903cafd4 schema:issueNumber 3
36 rdf:type schema:PublicationIssue
37 N8eaa86c675c1437cb65d19fdf1ca1596 schema:name readcube_id
38 schema:value f2e7546ebe6eb4f2bd56f5423687cd90d67a59e5728c10e10df9f523f1de50f3
39 rdf:type schema:PropertyValue
40 N9cafded24d3745299b17d00a8df1a242 rdf:first sg:person.014065234443.39
41 rdf:rest N279ad4acf9ef46019b7479ab756eacdc
42 Nb83547ce0f484dc18b03a12f548adac3 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Ncfe89acbe17a4fbc9655c763c4a604d0 rdf:first sg:person.013217321705.27
45 rdf:rest rdf:nil
46 Ndc7b3613f05746f5bd8bc919eb1df850 schema:name dimensions_id
47 schema:value pub.1050991119
48 rdf:type schema:PropertyValue
49 Ne1705749009b41c9af89fcf7e8eed49d schema:name doi
50 schema:value 10.1007/bf02400920
51 rdf:type schema:PropertyValue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
56 schema:name Statistics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136516 schema:issn 1072-3374
59 1573-8795
60 schema:name Journal of Mathematical Sciences
61 rdf:type schema:Periodical
62 sg:person.013217321705.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
63 schema:familyName Shorgin
64 schema:givenName S. Ya.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013217321705.27
66 rdf:type schema:Person
67 sg:person.014065234443.39 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
68 schema:familyName Bening
69 schema:givenName V. E.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39
71 rdf:type schema:Person
72 sg:person.014166423003.73 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
73 schema:familyName Korolev
74 schema:givenName V. Yu.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166423003.73
76 rdf:type schema:Person
77 sg:pub.10.1007/978-3-642-65809-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273926
78 https://doi.org/10.1007/978-3-642-65809-9
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/zamm.19280080406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023438505
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0002-9904-1948-09142-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002943911
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1137/1128010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062867607
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
87 schema:name Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob’yovy Gory, 119899, Moscow, Russian
88 Institute of Information Transmission, Russian Academy of Sciences, Vavilova, 30/6, 117966, Moscow, Russia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...