The effect of aluminium on the electrical and mechanical properties of BaTiO3 ceramics as a function of sintering temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-10

AUTHORS

T. V. Parry, H. M. Al-Allak, G. J. Russell, J. Woods

ABSTRACT

The effect of aluminium additions on the mechanical behaviour of BaTiO3 positive temperature coefficient of resistance ceramics sintered in air at temperatures ranging between 1220 and 1400° C has been investigated. Tensile strength has been measured indirectly by the diametral compression of lapped discs using concave loading anvils. Values of ∼ 85 and ∼ 110 MPa for samples fired near their optimum sintering temperature were determined for two batches of material, the latter of which contained additions of Al2O3 (0.55 mol%). Strength did not vary systematically with grain size and appeared to be controlled by near surface defects. The size of these cavities, which were generally crescent shaped, was consistent with the material having a bulk fracture toughness of ∼1.3 MPam1/2. The higher mechanical strength of samples which contained Al2O3 additions was attributed to the enhanced “healing up” of these cavities by the liquid phase giving a smaller inherent critical defect size rather than by increasing the bulk toughness of the ceramic. More... »

PAGES

3478-3482

Journal

TITLE

Journal of Materials Science

ISSUE

10

VOLUME

24

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02385728

DOI

http://dx.doi.org/10.1007/bf02385728

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032470693


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Applied Mechanics and Applied Physics Groups, School of Engineering and Applied Science, University of Durham, Science Laboratories, South Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parry", 
        "givenName": "T. V.", 
        "id": "sg:person.010405456416.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405456416.44"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Al-Allak", 
        "givenName": "H. M.", 
        "id": "sg:person.011452217765.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452217765.33"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Russell", 
        "givenName": "G. J.", 
        "id": "sg:person.012110672143.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110672143.43"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Woods", 
        "givenName": "J.", 
        "id": "sg:person.011035333271.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011035333271.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01154017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040844489", 
          "https://doi.org/10.1007/bf01154017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01154017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040844489", 
          "https://doi.org/10.1007/bf01154017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7952(71)90001-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046971616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7952(71)90001-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046971616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1978.tb09234.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052486979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3224808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062107441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3438594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062123497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3443665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062124760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00033536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085911551", 
          "https://doi.org/10.1007/bf00033536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-10", 
    "datePublishedReg": "1989-10-01", 
    "description": "The effect of aluminium additions on the mechanical behaviour of BaTiO3 positive temperature coefficient of resistance ceramics sintered in air at temperatures ranging between 1220 and 1400\u00b0 C has been investigated. Tensile strength has been measured indirectly by the diametral compression of lapped discs using concave loading anvils. Values of \u223c 85 and \u223c 110 MPa for samples fired near their optimum sintering temperature were determined for two batches of material, the latter of which contained additions of Al2O3 (0.55 mol%). Strength did not vary systematically with grain size and appeared to be controlled by near surface defects. The size of these cavities, which were generally crescent shaped, was consistent with the material having a bulk fracture toughness of \u223c1.3 MPam1/2. The higher mechanical strength of samples which contained Al2O3 additions was attributed to the enhanced \u201chealing up\u201d of these cavities by the liquid phase giving a smaller inherent critical defect size rather than by increasing the bulk toughness of the ceramic.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02385728", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "The effect of aluminium on the electrical and mechanical properties of BaTiO3 ceramics as a function of sintering temperature", 
    "pagination": "3478-3482", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9aafc68a84b5f666825f3d85ea32983fb6ef529e4f540aa1d689c8f516a7ea75"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02385728"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032470693"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02385728", 
      "https://app.dimensions.ai/details/publication/pub.1032470693"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02385728"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02385728'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02385728'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02385728'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02385728'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02385728 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb33240ddb49b4081b49b390ba14f9225
4 schema:citation sg:pub.10.1007/bf00033536
5 sg:pub.10.1007/bf01154017
6 https://doi.org/10.1016/0013-7952(71)90001-9
7 https://doi.org/10.1111/j.1151-2916.1978.tb09234.x
8 https://doi.org/10.1115/1.3224808
9 https://doi.org/10.1115/1.3438594
10 https://doi.org/10.1115/1.3443665
11 schema:datePublished 1989-10
12 schema:datePublishedReg 1989-10-01
13 schema:description The effect of aluminium additions on the mechanical behaviour of BaTiO3 positive temperature coefficient of resistance ceramics sintered in air at temperatures ranging between 1220 and 1400° C has been investigated. Tensile strength has been measured indirectly by the diametral compression of lapped discs using concave loading anvils. Values of ∼ 85 and ∼ 110 MPa for samples fired near their optimum sintering temperature were determined for two batches of material, the latter of which contained additions of Al2O3 (0.55 mol%). Strength did not vary systematically with grain size and appeared to be controlled by near surface defects. The size of these cavities, which were generally crescent shaped, was consistent with the material having a bulk fracture toughness of ∼1.3 MPam1/2. The higher mechanical strength of samples which contained Al2O3 additions was attributed to the enhanced “healing up” of these cavities by the liquid phase giving a smaller inherent critical defect size rather than by increasing the bulk toughness of the ceramic.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N252ddc5486b042c7a2223096bddff4f1
18 N4706d78cedfa497db0012319a4dceaf8
19 sg:journal.1312116
20 schema:name The effect of aluminium on the electrical and mechanical properties of BaTiO3 ceramics as a function of sintering temperature
21 schema:pagination 3478-3482
22 schema:productId N0d5a794d2137401dbddfdfaa7e495b5a
23 N414a344e3ca24e2b93b723e73ad599cf
24 Nd95bc5bb13c24148b1fdfcd2fecf918a
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032470693
26 https://doi.org/10.1007/bf02385728
27 schema:sdDatePublished 2019-04-11T13:00
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N9002848840e44d5f863d551ec6b4f51b
30 schema:url http://link.springer.com/10.1007%2FBF02385728
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0d5a794d2137401dbddfdfaa7e495b5a schema:name readcube_id
35 schema:value 9aafc68a84b5f666825f3d85ea32983fb6ef529e4f540aa1d689c8f516a7ea75
36 rdf:type schema:PropertyValue
37 N1aa28c78851d44b28f9b54ca3c534054 rdf:first sg:person.011035333271.09
38 rdf:rest rdf:nil
39 N252ddc5486b042c7a2223096bddff4f1 schema:issueNumber 10
40 rdf:type schema:PublicationIssue
41 N414a344e3ca24e2b93b723e73ad599cf schema:name doi
42 schema:value 10.1007/bf02385728
43 rdf:type schema:PropertyValue
44 N4706d78cedfa497db0012319a4dceaf8 schema:volumeNumber 24
45 rdf:type schema:PublicationVolume
46 N548e896ce0e94f3ea04278fcb3fb9f32 rdf:first sg:person.011452217765.33
47 rdf:rest Ne5afe521dcae433d967a66baa14e9cb0
48 N9002848840e44d5f863d551ec6b4f51b schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nb33240ddb49b4081b49b390ba14f9225 rdf:first sg:person.010405456416.44
51 rdf:rest N548e896ce0e94f3ea04278fcb3fb9f32
52 Nd95bc5bb13c24148b1fdfcd2fecf918a schema:name dimensions_id
53 schema:value pub.1032470693
54 rdf:type schema:PropertyValue
55 Ne5afe521dcae433d967a66baa14e9cb0 rdf:first sg:person.012110672143.43
56 rdf:rest N1aa28c78851d44b28f9b54ca3c534054
57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
58 schema:name Engineering
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
61 schema:name Materials Engineering
62 rdf:type schema:DefinedTerm
63 sg:journal.1312116 schema:issn 0022-2461
64 1573-4811
65 schema:name Journal of Materials Science
66 rdf:type schema:Periodical
67 sg:person.010405456416.44 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
68 schema:familyName Parry
69 schema:givenName T. V.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405456416.44
71 rdf:type schema:Person
72 sg:person.011035333271.09 schema:familyName Woods
73 schema:givenName J.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011035333271.09
75 rdf:type schema:Person
76 sg:person.011452217765.33 schema:familyName Al-Allak
77 schema:givenName H. M.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452217765.33
79 rdf:type schema:Person
80 sg:person.012110672143.43 schema:familyName Russell
81 schema:givenName G. J.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110672143.43
83 rdf:type schema:Person
84 sg:pub.10.1007/bf00033536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085911551
85 https://doi.org/10.1007/bf00033536
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01154017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040844489
88 https://doi.org/10.1007/bf01154017
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0013-7952(71)90001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046971616
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1111/j.1151-2916.1978.tb09234.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052486979
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1115/1.3224808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062107441
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1115/1.3438594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062123497
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1115/1.3443665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062124760
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
101 schema:name Applied Mechanics and Applied Physics Groups, School of Engineering and Applied Science, University of Durham, Science Laboratories, South Road, DH1 3LE, Durham, UK
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...