Estimation and model selection in constrained deconvolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-11

AUTHORS

Davide Verotta

ABSTRACT

We analyze in detail the estimation problem associated with the following problem. Given n noisy measurements (yi, i = 1, ..., n) of the response of a system to an input (A(t) where t indicates time), obtain an estimate of A(t) given a known K(t) (the unit impulse response function of the system) under the model: yi = integral of 0(ti) A(s)K(ti - s)ds + epsilon i where epsilon 1, ... ,epsilon n are independent identically distributed random variables with mean zero and common finite variance. In the solution to the problem, the unknown function is represented by a spline function, and the problem is recast in terms of (inequality constrained) linear regression. The main issues addressed are: (a) the comparison of different nonparametric regression methods in this context, and (b) how to do model selection, i.e., given a (finite) set of candidate spline functions, select the (possibly unique) best one using some (statistically based) selection criteria. Different spline candidate sets, and different asymptotic and resampling-based statistical selection criteria are compared by means of simulations. Due to the particular nature of the estimation problem, modifications to the criteria are suggested. Applications to simulated and real pharmacokinetics data are reported. More... »

PAGES

605-620

References to SciGraph publications

  • 1983. Regularization Techniques for Inverse Problems in Molecular Biology in NUMERICAL TREATMENT OF INVERSE PROBLEMS IN DIFFERENTIAL AND INTEGRAL EQUATIONS
  • 1960-06. Theory of transport in linear biological systems: II. Multiflux problems in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1960-06. Some mathematical aspects of chemotherapy: I. One-organ models in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1988-02. Numerical deconvolution using system identification methods in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 1989-04. An inequality-constrained least-squares deconvolution method in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 1978. A Practical Guide to Splines in NONE
  • 1987-01. Reliable and efficient deconvolution technique based on total linear least squares for calculating the renal retention function in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 1989-08. A semiparametric approach to physiological flow models in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 1960-09. Some mathematical aspects of chemotherapy—II: The distribution of a drug in the body in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1978-12. Smoothing noisy data with spline functions in NUMERISCHE MATHEMATIK
  • 1976-08. Theoretical and computational basis for drug bioavailability determinations using pharmacological data. I. General considerations and procedures in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 1960-03. Theory of transport in linear biological systems: I. Fundamental integral equation in BULLETIN OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02368641

    DOI

    http://dx.doi.org/10.1007/bf02368641

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026599976

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8116913


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cocaine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pharmacokinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thiopental", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Pharmacy and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA", 
                "Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA", 
                "Department of Biostatistics, University of California at Berkeley, Berkeley, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verotta", 
            "givenName": "Davide", 
            "id": "sg:person.01344046055.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344046055.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01404567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001100011", 
              "https://doi.org/10.1007/bf01404567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01404567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001100011", 
              "https://doi.org/10.1007/bf01404567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8396(87)90013-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003360504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8396(87)90013-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003360504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01061458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003789374", 
              "https://doi.org/10.1007/bf01061458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008512975", 
              "https://doi.org/10.1007/bf02477968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02477968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008512975", 
              "https://doi.org/10.1007/bf02477968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013180749", 
              "https://doi.org/10.1007/bf02478002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013180749", 
              "https://doi.org/10.1007/bf02478002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-307502-4.50028-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021979046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-7324-7_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025461839", 
              "https://doi.org/10.1007/978-1-4684-7324-7_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(70)90148-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027931713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02442816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028410942", 
              "https://doi.org/10.1007/bf02442816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033237795", 
              "https://doi.org/10.1007/bf02478005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033237795", 
              "https://doi.org/10.1007/bf02478005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01061863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038381879", 
              "https://doi.org/10.1007/bf01061863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01059031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040941370", 
              "https://doi.org/10.1007/bf01059031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4347(00)82792-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049035862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049764012", 
              "https://doi.org/10.1007/bf02478352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049764012", 
              "https://doi.org/10.1007/bf02478352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01063123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053435527", 
              "https://doi.org/10.1007/bf01063123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1974.10489157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058284645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1984.10487961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058285693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1989.10488470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058286168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1987.10478426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1974.1100705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061471419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176349548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064408892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177012761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177013525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064410166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josa.60.000596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065151747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2531849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074964060", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpregu.1989.256.4.r1005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079255066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpendo.1987.253.5.e584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079681310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/059/10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089205815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098555835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098556624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6333-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705102", 
              "https://doi.org/10.1007/978-1-4612-6333-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6333-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705102", 
              "https://doi.org/10.1007/978-1-4612-6333-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-11", 
        "datePublishedReg": "1993-11-01", 
        "description": "We analyze in detail the estimation problem associated with the following problem. Given n noisy measurements (yi, i = 1, ..., n) of the response of a system to an input (A(t) where t indicates time), obtain an estimate of A(t) given a known K(t) (the unit impulse response function of the system) under the model: yi = integral of 0(ti) A(s)K(ti - s)ds + epsilon i where epsilon 1, ... ,epsilon n are independent identically distributed random variables with mean zero and common finite variance. In the solution to the problem, the unknown function is represented by a spline function, and the problem is recast in terms of (inequality constrained) linear regression. The main issues addressed are: (a) the comparison of different nonparametric regression methods in this context, and (b) how to do model selection, i.e., given a (finite) set of candidate spline functions, select the (possibly unique) best one using some (statistically based) selection criteria. Different spline candidate sets, and different asymptotic and resampling-based statistical selection criteria are compared by means of simulations. Due to the particular nature of the estimation problem, modifications to the criteria are suggested. Applications to simulated and real pharmacokinetics data are reported.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02368641", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2440496", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1087247", 
            "issn": [
              "0145-3068", 
              "1573-9686"
            ], 
            "name": "Annals of Biomedical Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "Estimation and model selection in constrained deconvolution", 
        "pagination": "605-620", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7eb8239a62ff23ef8ae0d662908e46d4266896da564667ea38acd03193573ae7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8116913"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0361512"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02368641"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026599976"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02368641", 
          "https://app.dimensions.ai/details/publication/pub.1026599976"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71692_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02368641"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02368641'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02368641'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02368641'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02368641'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      71 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02368641 schema:about N102edbae738f40a48ebdf25625ea321b
    2 N24ac3b706b55440eaf9051e35e873182
    3 N2ca707083f2b43a0bfe53d0243440ce3
    4 N4feff175decd40c2b2e6742a0ceeb153
    5 N5c0908b1055d49ea80b040b6923c0ff9
    6 N89b0d65fd3cb490baf974982f9047560
    7 Na020bd544a914d608e0b9bf31314f4e9
    8 Na299f72b25ed4aa3ac9c75df8d45d21c
    9 Nbf86b91cc93c45a8a2f6290976f1c877
    10 anzsrc-for:01
    11 anzsrc-for:0104
    12 schema:author Ndcebb63ab4c443edbc37d06923d7728d
    13 schema:citation sg:pub.10.1007/978-1-4612-6333-3
    14 sg:pub.10.1007/978-1-4684-7324-7_22
    15 sg:pub.10.1007/bf01059031
    16 sg:pub.10.1007/bf01061458
    17 sg:pub.10.1007/bf01061863
    18 sg:pub.10.1007/bf01063123
    19 sg:pub.10.1007/bf01404567
    20 sg:pub.10.1007/bf02442816
    21 sg:pub.10.1007/bf02477968
    22 sg:pub.10.1007/bf02478002
    23 sg:pub.10.1007/bf02478005
    24 sg:pub.10.1007/bf02478352
    25 https://app.dimensions.ai/details/publication/pub.1074964060
    26 https://doi.org/10.1016/0025-5564(70)90148-3
    27 https://doi.org/10.1016/0167-8396(87)90013-6
    28 https://doi.org/10.1016/b978-0-12-307502-4.50028-3
    29 https://doi.org/10.1016/s0378-4347(00)82792-9
    30 https://doi.org/10.1080/00401706.1974.10489157
    31 https://doi.org/10.1080/00401706.1984.10487961
    32 https://doi.org/10.1080/00401706.1989.10488470
    33 https://doi.org/10.1080/01621459.1987.10478426
    34 https://doi.org/10.1090/conm/059/10
    35 https://doi.org/10.1109/tac.1974.1100705
    36 https://doi.org/10.1137/1.9781611970128
    37 https://doi.org/10.1137/1.9781611970319
    38 https://doi.org/10.1152/ajpendo.1987.253.5.e584
    39 https://doi.org/10.1152/ajpregu.1989.256.4.r1005
    40 https://doi.org/10.1214/aos/1176349548
    41 https://doi.org/10.1214/ss/1177012761
    42 https://doi.org/10.1214/ss/1177013525
    43 https://doi.org/10.1364/josa.60.000596
    44 https://doi.org/10.2307/2531849
    45 https://doi.org/10.2307/2532449
    46 schema:datePublished 1993-11
    47 schema:datePublishedReg 1993-11-01
    48 schema:description We analyze in detail the estimation problem associated with the following problem. Given n noisy measurements (yi, i = 1, ..., n) of the response of a system to an input (A(t) where t indicates time), obtain an estimate of A(t) given a known K(t) (the unit impulse response function of the system) under the model: yi = integral of 0(ti) A(s)K(ti - s)ds + epsilon i where epsilon 1, ... ,epsilon n are independent identically distributed random variables with mean zero and common finite variance. In the solution to the problem, the unknown function is represented by a spline function, and the problem is recast in terms of (inequality constrained) linear regression. The main issues addressed are: (a) the comparison of different nonparametric regression methods in this context, and (b) how to do model selection, i.e., given a (finite) set of candidate spline functions, select the (possibly unique) best one using some (statistically based) selection criteria. Different spline candidate sets, and different asymptotic and resampling-based statistical selection criteria are compared by means of simulations. Due to the particular nature of the estimation problem, modifications to the criteria are suggested. Applications to simulated and real pharmacokinetics data are reported.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree false
    52 schema:isPartOf Ne63790f40d2546b2b75700daf5ac6f4a
    53 Nf3637caa1f3a44d8b6e10f3ac3324434
    54 sg:journal.1087247
    55 schema:name Estimation and model selection in constrained deconvolution
    56 schema:pagination 605-620
    57 schema:productId N00d0ebe792584d218d4962d2942a4053
    58 N0252437de04140dc9ce3604072f43fee
    59 N1e2823c4df9c4e2b8eb2ba83d025dcd2
    60 Na9ed0df4ba844996aefc7a9930f1d4d2
    61 Nb163a463d3ee4e77808ea3719aea8933
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026599976
    63 https://doi.org/10.1007/bf02368641
    64 schema:sdDatePublished 2019-04-11T12:59
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nfedcabcbc4924e76be72a56ac6dc1184
    67 schema:url http://link.springer.com/10.1007%2FBF02368641
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N00d0ebe792584d218d4962d2942a4053 schema:name doi
    72 schema:value 10.1007/bf02368641
    73 rdf:type schema:PropertyValue
    74 N0252437de04140dc9ce3604072f43fee schema:name nlm_unique_id
    75 schema:value 0361512
    76 rdf:type schema:PropertyValue
    77 N102edbae738f40a48ebdf25625ea321b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Cocaine
    79 rdf:type schema:DefinedTerm
    80 N1e2823c4df9c4e2b8eb2ba83d025dcd2 schema:name pubmed_id
    81 schema:value 8116913
    82 rdf:type schema:PropertyValue
    83 N24ac3b706b55440eaf9051e35e873182 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Humans
    85 rdf:type schema:DefinedTerm
    86 N2ca707083f2b43a0bfe53d0243440ce3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Models, Statistical
    88 rdf:type schema:DefinedTerm
    89 N4feff175decd40c2b2e6742a0ceeb153 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Animals
    91 rdf:type schema:DefinedTerm
    92 N5c0908b1055d49ea80b040b6923c0ff9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Software
    94 rdf:type schema:DefinedTerm
    95 N89b0d65fd3cb490baf974982f9047560 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Models, Biological
    97 rdf:type schema:DefinedTerm
    98 Na020bd544a914d608e0b9bf31314f4e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Thiopental
    100 rdf:type schema:DefinedTerm
    101 Na299f72b25ed4aa3ac9c75df8d45d21c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Rats
    103 rdf:type schema:DefinedTerm
    104 Na9ed0df4ba844996aefc7a9930f1d4d2 schema:name dimensions_id
    105 schema:value pub.1026599976
    106 rdf:type schema:PropertyValue
    107 Nb163a463d3ee4e77808ea3719aea8933 schema:name readcube_id
    108 schema:value 7eb8239a62ff23ef8ae0d662908e46d4266896da564667ea38acd03193573ae7
    109 rdf:type schema:PropertyValue
    110 Nbf86b91cc93c45a8a2f6290976f1c877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Pharmacokinetics
    112 rdf:type schema:DefinedTerm
    113 Ndcebb63ab4c443edbc37d06923d7728d rdf:first sg:person.01344046055.88
    114 rdf:rest rdf:nil
    115 Ne63790f40d2546b2b75700daf5ac6f4a schema:volumeNumber 21
    116 rdf:type schema:PublicationVolume
    117 Nf3637caa1f3a44d8b6e10f3ac3324434 schema:issueNumber 6
    118 rdf:type schema:PublicationIssue
    119 Nfedcabcbc4924e76be72a56ac6dc1184 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Mathematical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Statistics
    126 rdf:type schema:DefinedTerm
    127 sg:grant.2440496 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02368641
    128 rdf:type schema:MonetaryGrant
    129 sg:journal.1087247 schema:issn 0145-3068
    130 1573-9686
    131 schema:name Annals of Biomedical Engineering
    132 rdf:type schema:Periodical
    133 sg:person.01344046055.88 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    134 schema:familyName Verotta
    135 schema:givenName Davide
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344046055.88
    137 rdf:type schema:Person
    138 sg:pub.10.1007/978-1-4612-6333-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705102
    139 https://doi.org/10.1007/978-1-4612-6333-3
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-1-4684-7324-7_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025461839
    142 https://doi.org/10.1007/978-1-4684-7324-7_22
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf01059031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040941370
    145 https://doi.org/10.1007/bf01059031
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf01061458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003789374
    148 https://doi.org/10.1007/bf01061458
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf01061863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038381879
    151 https://doi.org/10.1007/bf01061863
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf01063123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053435527
    154 https://doi.org/10.1007/bf01063123
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf01404567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001100011
    157 https://doi.org/10.1007/bf01404567
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02442816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028410942
    160 https://doi.org/10.1007/bf02442816
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf02477968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008512975
    163 https://doi.org/10.1007/bf02477968
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf02478002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013180749
    166 https://doi.org/10.1007/bf02478002
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf02478005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237795
    169 https://doi.org/10.1007/bf02478005
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf02478352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049764012
    172 https://doi.org/10.1007/bf02478352
    173 rdf:type schema:CreativeWork
    174 https://app.dimensions.ai/details/publication/pub.1074964060 schema:CreativeWork
    175 https://doi.org/10.1016/0025-5564(70)90148-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027931713
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/0167-8396(87)90013-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003360504
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/b978-0-12-307502-4.50028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021979046
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0378-4347(00)82792-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049035862
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1080/00401706.1974.10489157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284645
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1080/00401706.1984.10487961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058285693
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1080/00401706.1989.10488470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058286168
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1080/01621459.1987.10478426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303403
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1090/conm/059/10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089205815
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1137/1.9781611970128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555835
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1137/1.9781611970319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556624
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1152/ajpendo.1987.253.5.e584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079681310
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1152/ajpregu.1989.256.4.r1005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079255066
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1214/aos/1176349548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408892
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1214/ss/1177012761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409972
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1214/ss/1177013525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064410166
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1364/josa.60.000596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065151747
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.2307/2531849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977274
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.2307/2532449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977859
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    216 schema:name Department of Biostatistics, University of California at Berkeley, Berkeley, CA
    217 Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
    218 Department of Pharmacy and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...