Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-03

AUTHORS

David W. Kaczka, George M. Barnas, Bela Suki, Kenneth R. Lutchen

ABSTRACT

Time-domain estimation has been invoked for tracking of respiratory mechanical properties using primarily a simple single-compartment model containing a series resistance (Rrs) and elastance (Ers). However, owing to the viscoelastic properties of respiratory tissues, Rrs and Ers exhibit frequency dependence below 2 Hz. The goal of this study was to investigate the bias and statistical accuracy of various time-domain approaches with respect to model properties, as well as the estimated impedance spectra. Particular emphasis was placed on establishing the tracking capability using a standard step ventilation. A simulation study compared continuous-time versus discrete-time approaches for both the single-compartment and two-compartment models. Data were acquired in four healthy humans and two dogs before and after induced severe pulmonary edema while applying sinusoidal and standard ventilator forcing. Rrs and Ers were estimated either by the standard Fast Fourier Transform (FFT) approach or by a time-domain least square estimation. Results show that the continuous-time model form produced the least bias and smallest parameter uncertainty for a single-compartment analysis and is quite amenable for reliable on-line tracking. The discrete-time approach exhibits large uncertainty and bias, particularly with increasing noise in the flow data. In humans, the time-domain approach produced smooth estimates of Rrs and Ers spectra, but they were statistically unreliable at the lower frequencies. In dogs, both the FFT and time-domain analysis produced reliable and stable estimates for Rrs or Ers spectra for frequencies out to 2 Hz in all conditions. Nevertheless, obtaining stable on-line parameter estimates for the two-compartment viscoelastic models remained difficult. We conclude that time-domain analysis of respiratory mechanics should invoke a continuous-time model form. More... »

PAGES

135-151

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02368321

DOI

http://dx.doi.org/10.1007/bf02368321

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017698212

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7605051


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Impedance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Edema", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Mechanics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaczka", 
        "givenName": "David W.", 
        "id": "sg:person.01302306123.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302306123.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Anesthesiology, University of Maryland, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnas", 
        "givenName": "George M.", 
        "id": "sg:person.01030421064.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030421064.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "Bela", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Cummington Street, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lutchen", 
        "givenName": "Kenneth R.", 
        "id": "sg:person.011222222577.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222222577.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0010-4809(74)90027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(74)90027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci108198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010378786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(69)90007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010471983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(69)90007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010471983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-5425(90)90059-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025829861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-5687(92)90086-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038815111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm/145.3.522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039892328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm/145.1.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045615096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/piee.1972.0130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056897410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.108133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061083848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.18746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.2118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1972.1099880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061470638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1984.325293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1985.325646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1986.325866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.3.1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076180685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076804065", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.72.1.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076894479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.71.3.1159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077432590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.71.6.2425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077475536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.70.4.1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078176487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1990.68.5.2128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078452952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1990.69.2.766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078509714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1986.61.3.873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079936684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1993.75.6.2549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082662955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.1988.94943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086237503"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-03", 
    "datePublishedReg": "1995-03-01", 
    "description": "Time-domain estimation has been invoked for tracking of respiratory mechanical properties using primarily a simple single-compartment model containing a series resistance (Rrs) and elastance (Ers). However, owing to the viscoelastic properties of respiratory tissues, Rrs and Ers exhibit frequency dependence below 2 Hz. The goal of this study was to investigate the bias and statistical accuracy of various time-domain approaches with respect to model properties, as well as the estimated impedance spectra. Particular emphasis was placed on establishing the tracking capability using a standard step ventilation. A simulation study compared continuous-time versus discrete-time approaches for both the single-compartment and two-compartment models. Data were acquired in four healthy humans and two dogs before and after induced severe pulmonary edema while applying sinusoidal and standard ventilator forcing. Rrs and Ers were estimated either by the standard Fast Fourier Transform (FFT) approach or by a time-domain least square estimation. Results show that the continuous-time model form produced the least bias and smallest parameter uncertainty for a single-compartment analysis and is quite amenable for reliable on-line tracking. The discrete-time approach exhibits large uncertainty and bias, particularly with increasing noise in the flow data. In humans, the time-domain approach produced smooth estimates of Rrs and Ers spectra, but they were statistically unreliable at the lower frequencies. In dogs, both the FFT and time-domain analysis produced reliable and stable estimates for Rrs or Ers spectra for frequencies out to 2 Hz in all conditions. Nevertheless, obtaining stable on-line parameter estimates for the two-compartment viscoelastic models remained difficult. We conclude that time-domain analysis of respiratory mechanics should invoke a continuous-time model form.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02368321", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2534570", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra", 
    "pagination": "135-151", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5453515c59905a7d8996480c8cd96a4bd7bc8d2c19d20eadbc5394ff42717855"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7605051"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02368321"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017698212"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02368321", 
      "https://app.dimensions.ai/details/publication/pub.1017698212"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71677_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02368321"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02368321'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02368321'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02368321'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02368321'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      69 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02368321 schema:about N1a05e686e8a84f92b4f6fdec12bd6b0c
2 N1e4e846a38ee414eb0794e8c55c027da
3 N266cc154d85e4edf954a284f50e1ec7e
4 N41785dc0020f44e492b181c1e746aa2a
5 N70b180a8c3a248b7925e06c337d60f97
6 Naa35acc5910740a0aa6f175926c9d630
7 Nb35a438901fa4f3b8ce6f69037ea091d
8 Nb868ebd5b3b447a68e58eae466ebd07f
9 Nd08b62a54c1a4b29ad7b7e197a508652
10 Nf5d374d4d42647b988cfebd309a1eeea
11 Nf63272ea3f5b4d6b8f01b00f1ca2e3bc
12 Nf7e2b8371b2549dab41a1dcc312bdb4c
13 Nfb79ae0a30f54fa9a041f00decead510
14 Nfdd8afef36e844a08d556e746a4a373c
15 anzsrc-for:01
16 anzsrc-for:0104
17 schema:author N64d85e02f449411995b5e676160f11b4
18 schema:citation https://app.dimensions.ai/details/publication/pub.1076804065
19 https://doi.org/10.1016/0010-4809(69)90007-x
20 https://doi.org/10.1016/0010-4809(74)90027-5
21 https://doi.org/10.1016/0034-5687(92)90086-c
22 https://doi.org/10.1016/0141-5425(90)90059-v
23 https://doi.org/10.1049/piee.1972.0130
24 https://doi.org/10.1109/10.108133
25 https://doi.org/10.1109/10.18746
26 https://doi.org/10.1109/10.2118
27 https://doi.org/10.1109/iembs.1988.94943
28 https://doi.org/10.1109/tac.1972.1099880
29 https://doi.org/10.1109/tbme.1984.325293
30 https://doi.org/10.1109/tbme.1985.325646
31 https://doi.org/10.1109/tbme.1986.325866
32 https://doi.org/10.1152/jappl.1986.61.3.873
33 https://doi.org/10.1152/jappl.1990.68.5.2128
34 https://doi.org/10.1152/jappl.1990.69.2.766
35 https://doi.org/10.1152/jappl.1991.70.4.1536
36 https://doi.org/10.1152/jappl.1991.71.3.1159
37 https://doi.org/10.1152/jappl.1991.71.6.2425
38 https://doi.org/10.1152/jappl.1992.72.1.87
39 https://doi.org/10.1152/jappl.1992.73.3.1040
40 https://doi.org/10.1152/jappl.1993.75.6.2549
41 https://doi.org/10.1164/ajrccm/145.1.110
42 https://doi.org/10.1164/ajrccm/145.3.522
43 https://doi.org/10.1172/jci108198
44 schema:datePublished 1995-03
45 schema:datePublishedReg 1995-03-01
46 schema:description Time-domain estimation has been invoked for tracking of respiratory mechanical properties using primarily a simple single-compartment model containing a series resistance (Rrs) and elastance (Ers). However, owing to the viscoelastic properties of respiratory tissues, Rrs and Ers exhibit frequency dependence below 2 Hz. The goal of this study was to investigate the bias and statistical accuracy of various time-domain approaches with respect to model properties, as well as the estimated impedance spectra. Particular emphasis was placed on establishing the tracking capability using a standard step ventilation. A simulation study compared continuous-time versus discrete-time approaches for both the single-compartment and two-compartment models. Data were acquired in four healthy humans and two dogs before and after induced severe pulmonary edema while applying sinusoidal and standard ventilator forcing. Rrs and Ers were estimated either by the standard Fast Fourier Transform (FFT) approach or by a time-domain least square estimation. Results show that the continuous-time model form produced the least bias and smallest parameter uncertainty for a single-compartment analysis and is quite amenable for reliable on-line tracking. The discrete-time approach exhibits large uncertainty and bias, particularly with increasing noise in the flow data. In humans, the time-domain approach produced smooth estimates of Rrs and Ers spectra, but they were statistically unreliable at the lower frequencies. In dogs, both the FFT and time-domain analysis produced reliable and stable estimates for Rrs or Ers spectra for frequencies out to 2 Hz in all conditions. Nevertheless, obtaining stable on-line parameter estimates for the two-compartment viscoelastic models remained difficult. We conclude that time-domain analysis of respiratory mechanics should invoke a continuous-time model form.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N70da7928573f4ff887dd283048d2fb89
51 Ne1da7fc0cff54af48389e90099cc84f7
52 sg:journal.1087247
53 schema:name Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra
54 schema:pagination 135-151
55 schema:productId N3723b910c8384cab9e2528bea3350800
56 N42273014baf64a1389893ddcd3314d64
57 N609a3a0602b44c4589c2534afc536199
58 N85a3cb5786c04503b8e23d5ed74ca5c2
59 N971125c7d9d84c029cdcdba333e7c1a0
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017698212
61 https://doi.org/10.1007/bf02368321
62 schema:sdDatePublished 2019-04-11T12:57
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nf3ec795170ef41f79b69a5fbd0a157be
65 schema:url http://link.springer.com/10.1007%2FBF02368321
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1a05e686e8a84f92b4f6fdec12bd6b0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Female
71 rdf:type schema:DefinedTerm
72 N1e4e846a38ee414eb0794e8c55c027da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Electric Impedance
74 rdf:type schema:DefinedTerm
75 N266cc154d85e4edf954a284f50e1ec7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Viscosity
77 rdf:type schema:DefinedTerm
78 N3723b910c8384cab9e2528bea3350800 schema:name doi
79 schema:value 10.1007/bf02368321
80 rdf:type schema:PropertyValue
81 N41785dc0020f44e492b181c1e746aa2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Respiratory Mechanics
83 rdf:type schema:DefinedTerm
84 N42273014baf64a1389893ddcd3314d64 schema:name readcube_id
85 schema:value 5453515c59905a7d8996480c8cd96a4bd7bc8d2c19d20eadbc5394ff42717855
86 rdf:type schema:PropertyValue
87 N4cdf0cf9ee004c179b0e6aff06a244cf rdf:first sg:person.0730323706.34
88 rdf:rest Naa5a2db733054a4da3f40a6eaa1e5014
89 N609a3a0602b44c4589c2534afc536199 schema:name dimensions_id
90 schema:value pub.1017698212
91 rdf:type schema:PropertyValue
92 N64d85e02f449411995b5e676160f11b4 rdf:first sg:person.01302306123.98
93 rdf:rest Nadd797fcefca4ea39687371e20418bf1
94 N6a328cc351dd4bb0ba2224238d24c80e schema:name Department of Anesthesiology, University of Maryland, Baltimore, MD
95 rdf:type schema:Organization
96 N70b180a8c3a248b7925e06c337d60f97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Animals
98 rdf:type schema:DefinedTerm
99 N70da7928573f4ff887dd283048d2fb89 schema:volumeNumber 23
100 rdf:type schema:PublicationVolume
101 N85a3cb5786c04503b8e23d5ed74ca5c2 schema:name nlm_unique_id
102 schema:value 0361512
103 rdf:type schema:PropertyValue
104 N971125c7d9d84c029cdcdba333e7c1a0 schema:name pubmed_id
105 schema:value 7605051
106 rdf:type schema:PropertyValue
107 Naa35acc5910740a0aa6f175926c9d630 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Fourier Analysis
109 rdf:type schema:DefinedTerm
110 Naa5a2db733054a4da3f40a6eaa1e5014 rdf:first sg:person.011222222577.85
111 rdf:rest rdf:nil
112 Nadd797fcefca4ea39687371e20418bf1 rdf:first sg:person.01030421064.55
113 rdf:rest N4cdf0cf9ee004c179b0e6aff06a244cf
114 Nb35a438901fa4f3b8ce6f69037ea091d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Time Factors
116 rdf:type schema:DefinedTerm
117 Nb868ebd5b3b447a68e58eae466ebd07f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Biological
119 rdf:type schema:DefinedTerm
120 Nd08b62a54c1a4b29ad7b7e197a508652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Dogs
122 rdf:type schema:DefinedTerm
123 Ne1da7fc0cff54af48389e90099cc84f7 schema:issueNumber 2
124 rdf:type schema:PublicationIssue
125 Nf3ec795170ef41f79b69a5fbd0a157be schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nf5d374d4d42647b988cfebd309a1eeea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 Nf63272ea3f5b4d6b8f01b00f1ca2e3bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Respiration, Artificial
132 rdf:type schema:DefinedTerm
133 Nf7e2b8371b2549dab41a1dcc312bdb4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Biomechanical Phenomena
135 rdf:type schema:DefinedTerm
136 Nfb79ae0a30f54fa9a041f00decead510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Elasticity
138 rdf:type schema:DefinedTerm
139 Nfdd8afef36e844a08d556e746a4a373c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Pulmonary Edema
141 rdf:type schema:DefinedTerm
142 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
143 schema:name Mathematical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
146 schema:name Statistics
147 rdf:type schema:DefinedTerm
148 sg:grant.2534570 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02368321
149 rdf:type schema:MonetaryGrant
150 sg:journal.1087247 schema:issn 0145-3068
151 1573-9686
152 schema:name Annals of Biomedical Engineering
153 rdf:type schema:Periodical
154 sg:person.01030421064.55 schema:affiliation N6a328cc351dd4bb0ba2224238d24c80e
155 schema:familyName Barnas
156 schema:givenName George M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030421064.55
158 rdf:type schema:Person
159 sg:person.011222222577.85 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
160 schema:familyName Lutchen
161 schema:givenName Kenneth R.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222222577.85
163 rdf:type schema:Person
164 sg:person.01302306123.98 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
165 schema:familyName Kaczka
166 schema:givenName David W.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302306123.98
168 rdf:type schema:Person
169 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
170 schema:familyName Suki
171 schema:givenName Bela
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
173 rdf:type schema:Person
174 https://app.dimensions.ai/details/publication/pub.1076804065 schema:CreativeWork
175 https://doi.org/10.1016/0010-4809(69)90007-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010471983
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0010-4809(74)90027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630356
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0034-5687(92)90086-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038815111
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0141-5425(90)90059-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1025829861
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1049/piee.1972.0130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056897410
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/10.108133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061083848
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/10.18746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084116
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/10.2118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084159
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/iembs.1988.94943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086237503
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tac.1972.1099880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061470638
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tbme.1984.325293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525077
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tbme.1985.325646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525325
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tbme.1986.325866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525475
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1152/jappl.1986.61.3.873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079936684
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1152/jappl.1990.68.5.2128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078452952
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1152/jappl.1990.69.2.766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078509714
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/jappl.1991.70.4.1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078176487
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1152/jappl.1991.71.3.1159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077432590
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1152/jappl.1991.71.6.2425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077475536
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1152/jappl.1992.72.1.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076894479
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1152/jappl.1992.73.3.1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076180685
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1152/jappl.1993.75.6.2549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082662955
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1164/ajrccm/145.1.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045615096
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1164/ajrccm/145.3.522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039892328
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1172/jci108198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010378786
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
226 schema:name Department of Biomedical Engineering, Boston University, 44 Cummington Street, 02215, Boston, MA, USA
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...