On the rate of convergence ofL- andR-statistics under alternatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-08

AUTHORS

V. E. Bening

ABSTRACT

Asymptotic distributions of test statistics under alternatives are important from the point of view of their power properties. When the limiting distributions of test statistics are specified under the hypothesis in a certain sense, LeCam's third lemma ([4], Chapter 6) enables one to obtain their limiting distributions under close alternatives. In this paper we generalize LeCam's third lemma by using the rate of convergence in the case of asymptotically efficient test statistics. A general lemma is proved which is specified to linear combinations of order statistics (L-statistics) and linear rank statistics (R-statistics). Edgeworth-type asymptotic expansions for these statistics under alternatives are considered in [3]. More... »

PAGES

2227-2240

References to SciGraph publications

Journal

TITLE

Journal of Mathematical Sciences

ISSUE

2

VOLUME

76

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02362693

DOI

http://dx.doi.org/10.1007/bf02362693

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023351609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob'evy Gory, 119899, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bening", 
        "givenName": "V. E.", 
        "id": "sg:person.014065234443.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273926", 
          "https://doi.org/10.1007/978-3-642-65809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1110027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062865877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176995662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176342756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176343350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176343891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473451"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-08", 
    "datePublishedReg": "1995-08-01", 
    "description": "Asymptotic distributions of test statistics under alternatives are important from the point of view of their power properties. When the limiting distributions of test statistics are specified under the hypothesis in a certain sense, LeCam's third lemma ([4], Chapter 6) enables one to obtain their limiting distributions under close alternatives. In this paper we generalize LeCam's third lemma by using the rate of convergence in the case of asymptotically efficient test statistics. A general lemma is proved which is specified to linear combinations of order statistics (L-statistics) and linear rank statistics (R-statistics). Edgeworth-type asymptotic expansions for these statistics under alternatives are considered in [3].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02362693", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "On the rate of convergence ofL- andR-statistics under alternatives", 
    "pagination": "2227-2240", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f40e0ac1a33171d4504e00d14ceda8cd90a4fda87b1fbacd93b773a6c0d2f00"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02362693"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023351609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02362693", 
      "https://app.dimensions.ai/details/publication/pub.1023351609"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71674_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02362693"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02362693'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02362693'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02362693'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02362693'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02362693 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N6782192cb67141c4a4060776be5b6a97
4 schema:citation sg:pub.10.1007/978-3-642-65809-9
5 https://doi.org/10.1137/1110027
6 https://doi.org/10.1214/aop/1176995662
7 https://doi.org/10.1214/aos/1176342756
8 https://doi.org/10.1214/aos/1176343350
9 https://doi.org/10.1214/aos/1176343891
10 https://doi.org/10.2307/1403070
11 schema:datePublished 1995-08
12 schema:datePublishedReg 1995-08-01
13 schema:description Asymptotic distributions of test statistics under alternatives are important from the point of view of their power properties. When the limiting distributions of test statistics are specified under the hypothesis in a certain sense, LeCam's third lemma ([4], Chapter 6) enables one to obtain their limiting distributions under close alternatives. In this paper we generalize LeCam's third lemma by using the rate of convergence in the case of asymptotically efficient test statistics. A general lemma is proved which is specified to linear combinations of order statistics (L-statistics) and linear rank statistics (R-statistics). Edgeworth-type asymptotic expansions for these statistics under alternatives are considered in [3].
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N9d45b5ac1b1b4ebb93946b327d86bb99
18 Na3cf18f5161c4bfc876a56dda94c8dca
19 sg:journal.1136516
20 schema:name On the rate of convergence ofL- andR-statistics under alternatives
21 schema:pagination 2227-2240
22 schema:productId N01a7d27ca4a74630948802b9a08385e6
23 N6e35971c49ca44aab43b757f3f61ed5a
24 Na8d518f365474e4fb23eab119283f8da
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023351609
26 https://doi.org/10.1007/bf02362693
27 schema:sdDatePublished 2019-04-11T12:57
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N9a1ae688a71e422486f2d6a7941de05c
30 schema:url http://link.springer.com/10.1007%2FBF02362693
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N01a7d27ca4a74630948802b9a08385e6 schema:name doi
35 schema:value 10.1007/bf02362693
36 rdf:type schema:PropertyValue
37 N6782192cb67141c4a4060776be5b6a97 rdf:first sg:person.014065234443.39
38 rdf:rest rdf:nil
39 N6e35971c49ca44aab43b757f3f61ed5a schema:name readcube_id
40 schema:value 6f40e0ac1a33171d4504e00d14ceda8cd90a4fda87b1fbacd93b773a6c0d2f00
41 rdf:type schema:PropertyValue
42 N9a1ae688a71e422486f2d6a7941de05c schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N9d45b5ac1b1b4ebb93946b327d86bb99 schema:volumeNumber 76
45 rdf:type schema:PublicationVolume
46 Na3cf18f5161c4bfc876a56dda94c8dca schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 Na8d518f365474e4fb23eab119283f8da schema:name dimensions_id
49 schema:value pub.1023351609
50 rdf:type schema:PropertyValue
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
55 schema:name Statistics
56 rdf:type schema:DefinedTerm
57 sg:journal.1136516 schema:issn 1072-3374
58 1573-8795
59 schema:name Journal of Mathematical Sciences
60 rdf:type schema:Periodical
61 sg:person.014065234443.39 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
62 schema:familyName Bening
63 schema:givenName V. E.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065234443.39
65 rdf:type schema:Person
66 sg:pub.10.1007/978-3-642-65809-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273926
67 https://doi.org/10.1007/978-3-642-65809-9
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1137/1110027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865877
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1214/aop/1176995662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405265
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1214/aos/1176342756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406952
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1214/aos/1176343350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407131
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1214/aos/1176343891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407315
78 rdf:type schema:CreativeWork
79 https://doi.org/10.2307/1403070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473451
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
82 schema:name Department of Computational Mathematics and Cybernetics, Moscow State University, Vorob'evy Gory, 119899, Moscow, Russia
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...