Do we need full compliance data for population pharmacokinetic analysis? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-06-01

AUTHORS

Pascal Girard, Lewis B. Sheiner, Helen Kastrissios, Terrence F. Blaschke

ABSTRACT

For population pharmacokinetic analysis of multiple oral doses one of the key issues is knowing as precisely as possible the dose inputs in order to fit a model to the input-output (dose-concentration) relationship. Recently developed electronic monitoring devices, placed on pill containers, permit precise records to be obtained over months, of the time/date opening of the container. Such records are reported to be the most reliable measurement of drug taking behavior for ambulatory patients. To investigate strategies for using and summarizing this new abundant information, a Markov chain process model was developed, that simulates compliance data from real data from electronically monitored patients, and data simulations and analyses were conducted. Results indicate that traditional population pharmacokinetic analysis methods that ignore actual dosing information tend to estimate biased clearance and volume and markedly overestimate random interindividual variability. The best dosing information summarization strategies consist of initially estimating population pharmacokinetic parameters, using no covariates and only a limited number of dose records, the latter chosen based on an a priori estimate of the half-life of the drug in the compartment of interest; then resummarizing the dose records using either population or individual posterior Bayes parameter estimates from the first population fit; and finally reestimating the population parameters using the newly summarized dose records. Such summarization strategies yield the same parameter estimates as using full dosing information records while reducing by at least 75% the CPU time needed for a population pharmacokinetic analysis. More... »

PAGES

265-282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02353671

DOI

http://dx.doi.org/10.1007/bf02353671

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005925235

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8970015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Administration, Oral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ambulatory Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Compliance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacokinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de Pharmacologie Clinique, Hopital Cardiologique, BP 3041, F69694, Lyon Cedex 03, France", 
          "id": "http://www.grid.ac/institutes/grid.413858.3", 
          "name": [
            "Department of Pharmacy, School of Pharmacy, University of California, San Francisco, California", 
            "Service de Pharmacologie Clinique, Hopital Cardiologique, BP 3041, F69694, Lyon Cedex 03, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girard", 
        "givenName": "Pascal", 
        "id": "sg:person.012661201622.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Laboratory Medicine and Medicine, School of Medicine, University of California, Room C255, Box 0626, 94143-0626, San Francisco, California", 
          "id": "http://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Pharmacy, School of Pharmacy, University of California, San Francisco, California", 
            "Department of Laboratory Medicine and Medicine, School of Medicine, University of California, Room C255, Box 0626, 94143-0626, San Francisco, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheiner", 
        "givenName": "Lewis B.", 
        "id": "sg:person.0705422657.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705422657.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Clinical Pharmacology, Stanford University, Palo Alto, California", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Division of Clinical Pharmacology, Stanford University, Palo Alto, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastrissios", 
        "givenName": "Helen", 
        "id": "sg:person.0723150626.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723150626.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Clinical Pharmacology, Stanford University, Palo Alto, California", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Division of Clinical Pharmacology, Stanford University, Palo Alto, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blaschke", 
        "givenName": "Terrence F.", 
        "id": "sg:person.0667777724.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667777724.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01061470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004821462", 
          "https://doi.org/10.1007/bf01061470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01062273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048809686", 
          "https://doi.org/10.1007/bf01062273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-199427030-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028769967", 
          "https://doi.org/10.2165/00003088-199427030-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.1993.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000400006", 
          "https://doi.org/10.1038/clpt.1993.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899727", 
          "https://doi.org/10.1007/bf00280102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.1989.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032351258", 
          "https://doi.org/10.1038/clpt.1989.185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1177/009286159102500311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063724818", 
          "https://doi.org/10.1177/009286159102500311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-199222030-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026717666", 
          "https://doi.org/10.2165/00003088-199222030-00006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00315486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053121194", 
          "https://doi.org/10.1007/bf00315486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-06-01", 
    "datePublishedReg": "1996-06-01", 
    "description": "For population pharmacokinetic analysis of multiple oral doses one of the key issues is knowing as precisely as possible the dose inputs in order to fit a model to the input-output (dose-concentration) relationship. Recently developed electronic monitoring devices, placed on pill containers, permit precise records to be obtained over months, of the time/date opening of the container. Such records are reported to be the most reliable measurement of drug taking behavior for ambulatory patients. To investigate strategies for using and summarizing this new abundant information, a Markov chain process model was developed, that simulates compliance data from real data from electronically monitored patients, and data simulations and analyses were conducted. Results indicate that traditional population pharmacokinetic analysis methods that ignore actual dosing information tend to estimate biased clearance and volume and markedly overestimate random interindividual variability. The best dosing information summarization strategies consist of initially estimating population pharmacokinetic parameters, using no covariates and only a limited number of dose records, the latter chosen based on an a priori estimate of the half-life of the drug in the compartment of interest; then resummarizing the dose records using either population or individual posterior Bayes parameter estimates from the first population fit; and finally reestimating the population parameters using the newly summarized dose records. Such summarization strategies yield the same parameter estimates as using full dosing information records while reducing by at least 75% the CPU time needed for a population pharmacokinetic analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02353671", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2687187", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2687190", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2356653", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1016394", 
        "issn": [
          "1567-567X", 
          "2168-5789"
        ], 
        "name": "Journal of Pharmacokinetics and Pharmacodynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "population pharmacokinetic analysis", 
      "pharmacokinetic analysis", 
      "dose records", 
      "population pharmacokinetic parameters", 
      "electronic monitoring devices", 
      "drug taking behavior", 
      "ambulatory patients", 
      "dosing information", 
      "pharmacokinetic analysis methods", 
      "compliance data", 
      "pharmacokinetic parameters", 
      "pill containers", 
      "interindividual variability", 
      "patients", 
      "compartment of interest", 
      "doses one", 
      "taking behavior", 
      "population fit", 
      "records", 
      "summarization strategy", 
      "months", 
      "clearance", 
      "drugs", 
      "monitoring devices", 
      "limited number", 
      "covariates", 
      "information records", 
      "population", 
      "data", 
      "reliable measurements", 
      "strategies", 
      "real data", 
      "compartments", 
      "process model", 
      "abundant information", 
      "data simulation", 
      "analysis", 
      "CPU time", 
      "input-output relationship", 
      "volume", 
      "key issues", 
      "such records", 
      "information", 
      "relationship", 
      "number", 
      "estimates", 
      "time", 
      "same parameter estimates", 
      "variability", 
      "opening", 
      "analysis method", 
      "model", 
      "results", 
      "precise records", 
      "parameters", 
      "method", 
      "parameter estimates", 
      "input", 
      "measurements", 
      "devices", 
      "containers", 
      "interest", 
      "issues", 
      "population parameters", 
      "simulations", 
      "behavior", 
      "order", 
      "fit", 
      "one"
    ], 
    "name": "Do we need full compliance data for population pharmacokinetic analysis?", 
    "pagination": "265-282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005925235"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02353671"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8970015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02353671", 
      "https://app.dimensions.ai/details/publication/pub.1005925235"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_280.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02353671"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02353671'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02353671'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02353671'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02353671'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      112 URIs      95 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02353671 schema:about N1651e9682042470a87a547b37d52cefd
2 N226ebd738e234f9887151ba6be37a76b
3 N32ef0b9839bd43d18a955517db394d4e
4 N36ed2054363e44809706643fd4673391
5 N4505ac69b7064586b8999c43aba5b562
6 N4bb1eefd117c492d8b72a0d1ae862675
7 N50686a75c8d24722aa132787ef8b5b30
8 Nd06e772686d44d3896e1150c4e5f99d8
9 Nddf678b39a80484789ecd4d4151f1587
10 anzsrc-for:11
11 anzsrc-for:1117
12 schema:author N48920582f82f470887bb491458c677fd
13 schema:citation sg:pub.10.1007/bf00280102
14 sg:pub.10.1007/bf00315486
15 sg:pub.10.1007/bf01061470
16 sg:pub.10.1007/bf01062273
17 sg:pub.10.1038/clpt.1989.185
18 sg:pub.10.1038/clpt.1993.143
19 sg:pub.10.1177/009286159102500311
20 sg:pub.10.2165/00003088-199222030-00006
21 sg:pub.10.2165/00003088-199427030-00004
22 schema:datePublished 1996-06-01
23 schema:datePublishedReg 1996-06-01
24 schema:description For population pharmacokinetic analysis of multiple oral doses one of the key issues is knowing as precisely as possible the dose inputs in order to fit a model to the input-output (dose-concentration) relationship. Recently developed electronic monitoring devices, placed on pill containers, permit precise records to be obtained over months, of the time/date opening of the container. Such records are reported to be the most reliable measurement of drug taking behavior for ambulatory patients. To investigate strategies for using and summarizing this new abundant information, a Markov chain process model was developed, that simulates compliance data from real data from electronically monitored patients, and data simulations and analyses were conducted. Results indicate that traditional population pharmacokinetic analysis methods that ignore actual dosing information tend to estimate biased clearance and volume and markedly overestimate random interindividual variability. The best dosing information summarization strategies consist of initially estimating population pharmacokinetic parameters, using no covariates and only a limited number of dose records, the latter chosen based on an a priori estimate of the half-life of the drug in the compartment of interest; then resummarizing the dose records using either population or individual posterior Bayes parameter estimates from the first population fit; and finally reestimating the population parameters using the newly summarized dose records. Such summarization strategies yield the same parameter estimates as using full dosing information records while reducing by at least 75% the CPU time needed for a population pharmacokinetic analysis.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N945d8a62501e44038e1ab82dd602e90b
28 Nf4a734fd946e4b2e9edf860c241c2561
29 sg:journal.1016394
30 schema:keywords CPU time
31 abundant information
32 ambulatory patients
33 analysis
34 analysis method
35 behavior
36 clearance
37 compartment of interest
38 compartments
39 compliance data
40 containers
41 covariates
42 data
43 data simulation
44 devices
45 dose records
46 doses one
47 dosing information
48 drug taking behavior
49 drugs
50 electronic monitoring devices
51 estimates
52 fit
53 information
54 information records
55 input
56 input-output relationship
57 interest
58 interindividual variability
59 issues
60 key issues
61 limited number
62 measurements
63 method
64 model
65 monitoring devices
66 months
67 number
68 one
69 opening
70 order
71 parameter estimates
72 parameters
73 patients
74 pharmacokinetic analysis
75 pharmacokinetic analysis methods
76 pharmacokinetic parameters
77 pill containers
78 population
79 population fit
80 population parameters
81 population pharmacokinetic analysis
82 population pharmacokinetic parameters
83 precise records
84 process model
85 real data
86 records
87 relationship
88 reliable measurements
89 results
90 same parameter estimates
91 simulations
92 strategies
93 such records
94 summarization strategy
95 taking behavior
96 time
97 variability
98 volume
99 schema:name Do we need full compliance data for population pharmacokinetic analysis?
100 schema:pagination 265-282
101 schema:productId N4c0d47abc0cc4f639ea6a0c3e124dce9
102 N4e946f02f11a4ca2953d065e9310774e
103 N9734f9d66e6e411781044fe91f6b14c7
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005925235
105 https://doi.org/10.1007/bf02353671
106 schema:sdDatePublished 2022-10-01T06:29
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nc4bd4898650748da9f077207ed0d62bc
109 schema:url https://doi.org/10.1007/bf02353671
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N1651e9682042470a87a547b37d52cefd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Administration, Oral
115 rdf:type schema:DefinedTerm
116 N226ebd738e234f9887151ba6be37a76b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Drug Monitoring
118 rdf:type schema:DefinedTerm
119 N32ef0b9839bd43d18a955517db394d4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Computer Simulation
121 rdf:type schema:DefinedTerm
122 N36ed2054363e44809706643fd4673391 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Patient Compliance
124 rdf:type schema:DefinedTerm
125 N3776c3e28d064598adb6bafeddf71e80 rdf:first sg:person.0723150626.32
126 rdf:rest N9d4f6d309b024047ae9a494f71751b5c
127 N4505ac69b7064586b8999c43aba5b562 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 N48920582f82f470887bb491458c677fd rdf:first sg:person.012661201622.56
131 rdf:rest Nf0c761d3bb084d28be475ae22f258933
132 N4bb1eefd117c492d8b72a0d1ae862675 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Pharmacokinetics
134 rdf:type schema:DefinedTerm
135 N4c0d47abc0cc4f639ea6a0c3e124dce9 schema:name dimensions_id
136 schema:value pub.1005925235
137 rdf:type schema:PropertyValue
138 N4e946f02f11a4ca2953d065e9310774e schema:name doi
139 schema:value 10.1007/bf02353671
140 rdf:type schema:PropertyValue
141 N50686a75c8d24722aa132787ef8b5b30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Population Surveillance
143 rdf:type schema:DefinedTerm
144 N945d8a62501e44038e1ab82dd602e90b schema:issueNumber 3
145 rdf:type schema:PublicationIssue
146 N9734f9d66e6e411781044fe91f6b14c7 schema:name pubmed_id
147 schema:value 8970015
148 rdf:type schema:PropertyValue
149 N9d4f6d309b024047ae9a494f71751b5c rdf:first sg:person.0667777724.99
150 rdf:rest rdf:nil
151 Nc4bd4898650748da9f077207ed0d62bc schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Nd06e772686d44d3896e1150c4e5f99d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Reproducibility of Results
155 rdf:type schema:DefinedTerm
156 Nddf678b39a80484789ecd4d4151f1587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Ambulatory Care
158 rdf:type schema:DefinedTerm
159 Nf0c761d3bb084d28be475ae22f258933 rdf:first sg:person.0705422657.60
160 rdf:rest N3776c3e28d064598adb6bafeddf71e80
161 Nf4a734fd946e4b2e9edf860c241c2561 schema:volumeNumber 24
162 rdf:type schema:PublicationVolume
163 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
164 schema:name Medical and Health Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
167 schema:name Public Health and Health Services
168 rdf:type schema:DefinedTerm
169 sg:grant.2356653 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02353671
170 rdf:type schema:MonetaryGrant
171 sg:grant.2687187 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02353671
172 rdf:type schema:MonetaryGrant
173 sg:grant.2687190 http://pending.schema.org/fundedItem sg:pub.10.1007/bf02353671
174 rdf:type schema:MonetaryGrant
175 sg:journal.1016394 schema:issn 1567-567X
176 2168-5789
177 schema:name Journal of Pharmacokinetics and Pharmacodynamics
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.012661201622.56 schema:affiliation grid-institutes:grid.413858.3
181 schema:familyName Girard
182 schema:givenName Pascal
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56
184 rdf:type schema:Person
185 sg:person.0667777724.99 schema:affiliation grid-institutes:grid.168010.e
186 schema:familyName Blaschke
187 schema:givenName Terrence F.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667777724.99
189 rdf:type schema:Person
190 sg:person.0705422657.60 schema:affiliation grid-institutes:grid.266102.1
191 schema:familyName Sheiner
192 schema:givenName Lewis B.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705422657.60
194 rdf:type schema:Person
195 sg:person.0723150626.32 schema:affiliation grid-institutes:grid.168010.e
196 schema:familyName Kastrissios
197 schema:givenName Helen
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723150626.32
199 rdf:type schema:Person
200 sg:pub.10.1007/bf00280102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899727
201 https://doi.org/10.1007/bf00280102
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/bf00315486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053121194
204 https://doi.org/10.1007/bf00315486
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf01061470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004821462
207 https://doi.org/10.1007/bf01061470
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/bf01062273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048809686
210 https://doi.org/10.1007/bf01062273
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/clpt.1989.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032351258
213 https://doi.org/10.1038/clpt.1989.185
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/clpt.1993.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000400006
216 https://doi.org/10.1038/clpt.1993.143
217 rdf:type schema:CreativeWork
218 sg:pub.10.1177/009286159102500311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063724818
219 https://doi.org/10.1177/009286159102500311
220 rdf:type schema:CreativeWork
221 sg:pub.10.2165/00003088-199222030-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026717666
222 https://doi.org/10.2165/00003088-199222030-00006
223 rdf:type schema:CreativeWork
224 sg:pub.10.2165/00003088-199427030-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028769967
225 https://doi.org/10.2165/00003088-199427030-00004
226 rdf:type schema:CreativeWork
227 grid-institutes:grid.168010.e schema:alternateName Division of Clinical Pharmacology, Stanford University, Palo Alto, California
228 schema:name Division of Clinical Pharmacology, Stanford University, Palo Alto, California
229 rdf:type schema:Organization
230 grid-institutes:grid.266102.1 schema:alternateName Department of Laboratory Medicine and Medicine, School of Medicine, University of California, Room C255, Box 0626, 94143-0626, San Francisco, California
231 schema:name Department of Laboratory Medicine and Medicine, School of Medicine, University of California, Room C255, Box 0626, 94143-0626, San Francisco, California
232 Department of Pharmacy, School of Pharmacy, University of California, San Francisco, California
233 rdf:type schema:Organization
234 grid-institutes:grid.413858.3 schema:alternateName Service de Pharmacologie Clinique, Hopital Cardiologique, BP 3041, F69694, Lyon Cedex 03, France
235 schema:name Department of Pharmacy, School of Pharmacy, University of California, San Francisco, California
236 Service de Pharmacologie Clinique, Hopital Cardiologique, BP 3041, F69694, Lyon Cedex 03, France
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...