Suppression of electromyogram interference on the electrocardiogram by transform domain denoising View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

N. Nikolaev, A. Gotchev, K. Egiazarian, Z. Nikolov

ABSTRACT

A method for suppression of electromyogram (EMG) interference in electrocardiogram (ECG) recordings is presented. By assuming that the EMG is long-term non-stationary Gaussian noise, two successive decompositions were proposed, and the data transformed for Wiener filtering. Successive ECG cycles were rearranged and aligned by the R-wave, forming a matrix containing separated heart cycles in its rows. A short-window discrete cosine transform (DCT) was applied to the columns of the matrix for inter-cycle de-correlation. Next, Weiner filtering in a translation-invariant wavelet domain was performed on the DCT-transformed matrix rows for de-correlation of the data into each ECG cycle. The method resulted in an improvement in the signal-to-noise ratio of more than 10 db, a threefold reduction in mean relative amplitude errors and reduced ripple artifacts around the signal transients, thus preserving the waveform in diagnostically important signal segments. More... »

PAGES

649-655

References to SciGraph publications

  • 1980-03. QRS wave detection in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02345437

    DOI

    http://dx.doi.org/10.1007/bf02345437

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001010972

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11804171


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artifacts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrocardiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electromyography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Information Technologies, Bulgarian Academy of Sciences, Bulgaria", 
              "id": "http://www.grid.ac/institutes/grid.493364.f", 
              "name": [
                "Institute of Information Technologies, Bulgarian Academy of Sciences, Bulgaria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolaev", 
            "givenName": "N.", 
            "id": "sg:person.01146174563.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146174563.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tampere International Center for Signal Processing, Tampere University of Technology, Finland", 
              "id": "http://www.grid.ac/institutes/grid.502801.e", 
              "name": [
                "Tampere International Center for Signal Processing, Tampere University of Technology, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gotchev", 
            "givenName": "A.", 
            "id": "sg:person.01214307763.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214307763.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tampere International Center for Signal Processing, Tampere University of Technology, Finland", 
              "id": "http://www.grid.ac/institutes/grid.502801.e", 
              "name": [
                "Tampere International Center for Signal Processing, Tampere University of Technology, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Egiazarian", 
            "givenName": "K.", 
            "id": "sg:person.011014775457.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014775457.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Information Technologies, Bulgarian Academy of Sciences, Bulgaria", 
              "id": "http://www.grid.ac/institutes/grid.493364.f", 
              "name": [
                "Institute of Information Technologies, Bulgarian Academy of Sciences, Bulgaria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolov", 
            "givenName": "Z.", 
            "id": "sg:person.013113140362.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113140362.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02443287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006591734", 
              "https://doi.org/10.1007/bf02443287"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-11", 
        "datePublishedReg": "2001-11-01", 
        "description": "A method for suppression of electromyogram (EMG) interference in electrocardiogram (ECG) recordings is presented. By assuming that the EMG is long-term non-stationary Gaussian noise, two successive decompositions were proposed, and the data transformed for Wiener filtering. Successive ECG cycles were rearranged and aligned by the R-wave, forming a matrix containing separated heart cycles in its rows. A short-window discrete cosine transform (DCT) was applied to the columns of the matrix for inter-cycle de-correlation. Next, Weiner filtering in a translation-invariant wavelet domain was performed on the DCT-transformed matrix rows for de-correlation of the data into each ECG cycle. The method resulted in an improvement in the signal-to-noise ratio of more than 10 db, a threefold reduction in mean relative amplitude errors and reduced ripple artifacts around the signal transients, thus preserving the waveform in diagnostically important signal segments.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02345437", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1005585", 
            "issn": [
              "1357-5481", 
              "1741-0444"
            ], 
            "name": "Medical & Biological Engineering & Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "keywords": [
          "relative amplitude error", 
          "discrete cosine transform", 
          "noise ratio", 
          "ECG cycles", 
          "de-correlation", 
          "amplitude error", 
          "Gaussian noise", 
          "interference", 
          "cosine transform", 
          "dB", 
          "signal segments", 
          "matrix rows", 
          "signals", 
          "wavelet domain", 
          "signal transients", 
          "noise", 
          "waveforms", 
          "transform domain", 
          "filtering", 
          "Wiener filtering", 
          "transform", 
          "electromyogram (EMG) interference", 
          "suppression", 
          "successive decomposition", 
          "matrix", 
          "domain", 
          "improvement", 
          "ratio", 
          "method", 
          "non-stationary Gaussian noise", 
          "waves", 
          "heart cycle", 
          "error", 
          "ripple artifacts", 
          "cycle", 
          "artifacts", 
          "threefold reduction", 
          "reduction", 
          "data", 
          "transients", 
          "electrocardiogram recordings", 
          "column", 
          "decomposition", 
          "rows", 
          "electrocardiogram", 
          "segments", 
          "recordings", 
          "EMG", 
          "Weiner", 
          "long-term non-stationary Gaussian noise", 
          "Successive ECG cycles", 
          "short-window discrete cosine transform", 
          "inter-cycle de-correlation", 
          "translation-invariant wavelet domain", 
          "DCT-transformed matrix rows", 
          "mean relative amplitude errors", 
          "important signal segments"
        ], 
        "name": "Suppression of electromyogram interference on the electrocardiogram by transform domain denoising", 
        "pagination": "649-655", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001010972"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02345437"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11804171"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02345437", 
          "https://app.dimensions.ai/details/publication/pub.1001010972"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_307.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02345437"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02345437'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02345437'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02345437'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02345437'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      22 PREDICATES      91 URIs      81 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02345437 schema:about N4a0dab52f0c54181bdbeb515a2866b1f
    2 N57dab3e6ba4d4b8e8bea5694c25a8c45
    3 N6f85f119123a4c47a9ef0fa52023e877
    4 N8e3d3cac22994bea94628523f526639e
    5 Nccde3703eec541b18847057570c49055
    6 anzsrc-for:09
    7 anzsrc-for:0903
    8 anzsrc-for:0906
    9 schema:author Nf379901853e64aef96c3a3160f5af46d
    10 schema:citation sg:pub.10.1007/bf02443287
    11 schema:datePublished 2001-11
    12 schema:datePublishedReg 2001-11-01
    13 schema:description A method for suppression of electromyogram (EMG) interference in electrocardiogram (ECG) recordings is presented. By assuming that the EMG is long-term non-stationary Gaussian noise, two successive decompositions were proposed, and the data transformed for Wiener filtering. Successive ECG cycles were rearranged and aligned by the R-wave, forming a matrix containing separated heart cycles in its rows. A short-window discrete cosine transform (DCT) was applied to the columns of the matrix for inter-cycle de-correlation. Next, Weiner filtering in a translation-invariant wavelet domain was performed on the DCT-transformed matrix rows for de-correlation of the data into each ECG cycle. The method resulted in an improvement in the signal-to-noise ratio of more than 10 db, a threefold reduction in mean relative amplitude errors and reduced ripple artifacts around the signal transients, thus preserving the waveform in diagnostically important signal segments.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N05192297c9e94ccc8e3527d970cb08bd
    18 N6e0779ceba4a451787586cee58490d6f
    19 sg:journal.1005585
    20 schema:keywords DCT-transformed matrix rows
    21 ECG cycles
    22 EMG
    23 Gaussian noise
    24 Successive ECG cycles
    25 Weiner
    26 Wiener filtering
    27 amplitude error
    28 artifacts
    29 column
    30 cosine transform
    31 cycle
    32 dB
    33 data
    34 de-correlation
    35 decomposition
    36 discrete cosine transform
    37 domain
    38 electrocardiogram
    39 electrocardiogram recordings
    40 electromyogram (EMG) interference
    41 error
    42 filtering
    43 heart cycle
    44 important signal segments
    45 improvement
    46 inter-cycle de-correlation
    47 interference
    48 long-term non-stationary Gaussian noise
    49 matrix
    50 matrix rows
    51 mean relative amplitude errors
    52 method
    53 noise
    54 noise ratio
    55 non-stationary Gaussian noise
    56 ratio
    57 recordings
    58 reduction
    59 relative amplitude error
    60 ripple artifacts
    61 rows
    62 segments
    63 short-window discrete cosine transform
    64 signal segments
    65 signal transients
    66 signals
    67 successive decomposition
    68 suppression
    69 threefold reduction
    70 transform
    71 transform domain
    72 transients
    73 translation-invariant wavelet domain
    74 waveforms
    75 wavelet domain
    76 waves
    77 schema:name Suppression of electromyogram interference on the electrocardiogram by transform domain denoising
    78 schema:pagination 649-655
    79 schema:productId N4d6cf284b3d54a8bb8dd2f5239b66e0a
    80 N79abbdaa24d24c3f803d1800f815afe3
    81 Nbc7bb07ec2b24dea88de1a1645f775e9
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001010972
    83 https://doi.org/10.1007/bf02345437
    84 schema:sdDatePublished 2021-12-01T19:11
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N2d51a9f72c404167a32255de29efde3a
    87 schema:url https://doi.org/10.1007/bf02345437
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N05192297c9e94ccc8e3527d970cb08bd schema:issueNumber 6
    92 rdf:type schema:PublicationIssue
    93 N2d51a9f72c404167a32255de29efde3a schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 N4a0dab52f0c54181bdbeb515a2866b1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Signal Processing, Computer-Assisted
    97 rdf:type schema:DefinedTerm
    98 N4d6cf284b3d54a8bb8dd2f5239b66e0a schema:name dimensions_id
    99 schema:value pub.1001010972
    100 rdf:type schema:PropertyValue
    101 N57dab3e6ba4d4b8e8bea5694c25a8c45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Artifacts
    103 rdf:type schema:DefinedTerm
    104 N6e0779ceba4a451787586cee58490d6f schema:volumeNumber 39
    105 rdf:type schema:PublicationVolume
    106 N6f85f119123a4c47a9ef0fa52023e877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Electromyography
    108 rdf:type schema:DefinedTerm
    109 N79abbdaa24d24c3f803d1800f815afe3 schema:name doi
    110 schema:value 10.1007/bf02345437
    111 rdf:type schema:PropertyValue
    112 N814198f4d49a4ba7befd7c5b44ad2e2c rdf:first sg:person.01214307763.18
    113 rdf:rest Nb3c07846fdae4326bee5ea076fa59a3f
    114 N8e3d3cac22994bea94628523f526639e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Humans
    116 rdf:type schema:DefinedTerm
    117 Nb3c07846fdae4326bee5ea076fa59a3f rdf:first sg:person.011014775457.32
    118 rdf:rest Ndce9e57ade2648769a8482d66ad441bb
    119 Nbc7bb07ec2b24dea88de1a1645f775e9 schema:name pubmed_id
    120 schema:value 11804171
    121 rdf:type schema:PropertyValue
    122 Nccde3703eec541b18847057570c49055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Electrocardiography
    124 rdf:type schema:DefinedTerm
    125 Ndce9e57ade2648769a8482d66ad441bb rdf:first sg:person.013113140362.74
    126 rdf:rest rdf:nil
    127 Nf379901853e64aef96c3a3160f5af46d rdf:first sg:person.01146174563.63
    128 rdf:rest N814198f4d49a4ba7befd7c5b44ad2e2c
    129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Engineering
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Biomedical Engineering
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Electrical and Electronic Engineering
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1005585 schema:issn 1357-5481
    139 1741-0444
    140 schema:name Medical & Biological Engineering & Computing
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.011014775457.32 schema:affiliation grid-institutes:grid.502801.e
    144 schema:familyName Egiazarian
    145 schema:givenName K.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014775457.32
    147 rdf:type schema:Person
    148 sg:person.01146174563.63 schema:affiliation grid-institutes:grid.493364.f
    149 schema:familyName Nikolaev
    150 schema:givenName N.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146174563.63
    152 rdf:type schema:Person
    153 sg:person.01214307763.18 schema:affiliation grid-institutes:grid.502801.e
    154 schema:familyName Gotchev
    155 schema:givenName A.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214307763.18
    157 rdf:type schema:Person
    158 sg:person.013113140362.74 schema:affiliation grid-institutes:grid.493364.f
    159 schema:familyName Nikolov
    160 schema:givenName Z.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113140362.74
    162 rdf:type schema:Person
    163 sg:pub.10.1007/bf02443287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006591734
    164 https://doi.org/10.1007/bf02443287
    165 rdf:type schema:CreativeWork
    166 grid-institutes:grid.493364.f schema:alternateName Institute of Information Technologies, Bulgarian Academy of Sciences, Bulgaria
    167 schema:name Institute of Information Technologies, Bulgarian Academy of Sciences, Bulgaria
    168 rdf:type schema:Organization
    169 grid-institutes:grid.502801.e schema:alternateName Tampere International Center for Signal Processing, Tampere University of Technology, Finland
    170 schema:name Tampere International Center for Signal Processing, Tampere University of Technology, Finland
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...