Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

P. J. Durka, D. Ircha, C. Neuper, G. Pfurtscheller

ABSTRACT

A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment. More... »

PAGES

315-321

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02345286

DOI

http://dx.doi.org/10.1007/bf02345286

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019787159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11465886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fingers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Laboratory of Medical Physics, Warsaw University, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "P. J.", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Laboratory of Medical Physics, Warsaw University, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ircha", 
        "givenName": "D.", 
        "id": "sg:person.01047764240.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047764240.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Ludwig Boltzmann Institute of Medical Informatics & Neuroinformatics, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuper", 
        "givenName": "C.", 
        "id": "sg:person.01055527633.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055527633.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Department of Medical Informatics, Institute for Biomedical Engineering, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfurtscheller", 
        "givenName": "G.", 
        "id": "sg:person.01040327776.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040327776.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0013-4694(95)00258-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008041920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ph.55.030193.002025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011766244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(78)90107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(78)90107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(93)90886-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(93)90886-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(96)12796-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025049887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-7742(08)60333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026069779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(84)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(84)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(97)13358-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041113137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046629848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00141-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047824550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.905866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.1999.802528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093928099"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02345286", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation", 
    "pagination": "315-321", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e46da6d9845ec223f68e46d69708b111e2dc4d514e10f4892b92b317f0483d7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11465886"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02345286"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019787159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02345286", 
      "https://app.dimensions.ai/details/publication/pub.1019787159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02345286"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      49 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02345286 schema:about N3e446974924b4d3380f0c1862439731f
2 N49fe5f866bbb4e4f95e1be9b6642d5d0
3 N5acb31a23f7c4a03800dfe264942d546
4 N5bb5660272c84c2098cf09fa43525ac5
5 N5ceaf02c547f4d04b0120d6b797a0352
6 N9cf5e1fdea71456fbb0a364cf4ac43b4
7 Ndf71959f1d7f42dbb044e9550152f4ea
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N460eb711d4a64806bbdb15a13253fc1a
11 schema:citation https://doi.org/10.1016/0013-4694(78)90107-4
12 https://doi.org/10.1016/0013-4694(95)00258-8
13 https://doi.org/10.1016/0168-5597(84)90045-5
14 https://doi.org/10.1016/0304-3940(93)90886-p
15 https://doi.org/10.1016/0304-3940(96)12796-8
16 https://doi.org/10.1016/s0074-7742(08)60333-5
17 https://doi.org/10.1016/s0304-3940(97)13358-4
18 https://doi.org/10.1016/s1388-2457(99)00141-8
19 https://doi.org/10.1016/s1388-2457(99)00175-3
20 https://doi.org/10.1109/78.258082
21 https://doi.org/10.1109/78.905866
22 https://doi.org/10.1109/iembs.1999.802528
23 https://doi.org/10.1146/annurev.ph.55.030193.002025
24 schema:datePublished 2001-05
25 schema:datePublishedReg 2001-05-01
26 schema:description A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N251ccb2b5f6447509220ce1a6214bf07
31 Naf6af67c4043468bbaf4ccf988682906
32 sg:journal.1005585
33 schema:name Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation
34 schema:pagination 315-321
35 schema:productId N242c2db607be45d986a6d4ac63f1d587
36 N251f30a7f10a40c6b5940ac40f87e624
37 N95502a46aaa541769f0b3b1b581d0837
38 Nc081b9ff0bbd44608845121d6ef5c055
39 Nd4cb933569fd4107b9da40877a4a8187
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019787159
41 https://doi.org/10.1007/bf02345286
42 schema:sdDatePublished 2019-04-11T12:58
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9636fec961be48798bc19343ee9c86a1
45 schema:url http://link.springer.com/10.1007/BF02345286
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N10c664714ff1478c87ea0abc3e56bf0a rdf:first sg:person.01040327776.75
50 rdf:rest rdf:nil
51 N242c2db607be45d986a6d4ac63f1d587 schema:name dimensions_id
52 schema:value pub.1019787159
53 rdf:type schema:PropertyValue
54 N251ccb2b5f6447509220ce1a6214bf07 schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 N251f30a7f10a40c6b5940ac40f87e624 schema:name readcube_id
57 schema:value 5e46da6d9845ec223f68e46d69708b111e2dc4d514e10f4892b92b317f0483d7
58 rdf:type schema:PropertyValue
59 N3e446974924b4d3380f0c1862439731f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Signal Processing, Computer-Assisted
61 rdf:type schema:DefinedTerm
62 N460eb711d4a64806bbdb15a13253fc1a rdf:first sg:person.0724722444.23
63 rdf:rest Ne7d3790951de4f6aae4db13bfcfd191d
64 N49fe5f866bbb4e4f95e1be9b6642d5d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Male
66 rdf:type schema:DefinedTerm
67 N5acb31a23f7c4a03800dfe264942d546 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Humans
69 rdf:type schema:DefinedTerm
70 N5bb5660272c84c2098cf09fa43525ac5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Adult
72 rdf:type schema:DefinedTerm
73 N5ceaf02c547f4d04b0120d6b797a0352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Movement
75 rdf:type schema:DefinedTerm
76 N862637263db146e8994c215de70444fc rdf:first sg:person.01055527633.30
77 rdf:rest N10c664714ff1478c87ea0abc3e56bf0a
78 N95502a46aaa541769f0b3b1b581d0837 schema:name doi
79 schema:value 10.1007/bf02345286
80 rdf:type schema:PropertyValue
81 N9636fec961be48798bc19343ee9c86a1 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N9cf5e1fdea71456fbb0a364cf4ac43b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Fingers
85 rdf:type schema:DefinedTerm
86 Naf6af67c4043468bbaf4ccf988682906 schema:volumeNumber 39
87 rdf:type schema:PublicationVolume
88 Nc081b9ff0bbd44608845121d6ef5c055 schema:name pubmed_id
89 schema:value 11465886
90 rdf:type schema:PropertyValue
91 Nd4cb933569fd4107b9da40877a4a8187 schema:name nlm_unique_id
92 schema:value 7704869
93 rdf:type schema:PropertyValue
94 Ndf71959f1d7f42dbb044e9550152f4ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Electroencephalography
96 rdf:type schema:DefinedTerm
97 Ne7d3790951de4f6aae4db13bfcfd191d rdf:first sg:person.01047764240.17
98 rdf:rest N862637263db146e8994c215de70444fc
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
103 schema:name Statistics
104 rdf:type schema:DefinedTerm
105 sg:journal.1005585 schema:issn 1357-5481
106 1741-0444
107 schema:name Medical & Biological Engineering & Computing
108 rdf:type schema:Periodical
109 sg:person.01040327776.75 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
110 schema:familyName Pfurtscheller
111 schema:givenName G.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040327776.75
113 rdf:type schema:Person
114 sg:person.01047764240.17 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
115 schema:familyName Ircha
116 schema:givenName D.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047764240.17
118 rdf:type schema:Person
119 sg:person.01055527633.30 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
120 schema:familyName Neuper
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055527633.30
123 rdf:type schema:Person
124 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
125 schema:familyName Durka
126 schema:givenName P. J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
128 rdf:type schema:Person
129 https://doi.org/10.1016/0013-4694(78)90107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245166
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0013-4694(95)00258-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008041920
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0168-5597(84)90045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028446119
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0304-3940(93)90886-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1023730668
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0304-3940(96)12796-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025049887
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0074-7742(08)60333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026069779
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0304-3940(97)13358-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041113137
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1388-2457(99)00141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824550
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1388-2457(99)00175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629848
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/78.905866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231475
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/iembs.1999.802528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093928099
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1146/annurev.ph.55.030193.002025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011766244
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
156 schema:name Laboratory of Medical Physics, Warsaw University, Warsaw, Poland
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
159 schema:name Department of Medical Informatics, Institute for Biomedical Engineering, Graz University of Technology, Graz, Austria
160 Ludwig Boltzmann Institute of Medical Informatics & Neuroinformatics, Graz University of Technology, Graz, Austria
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...