Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

P. J. Durka, D. Ircha, C. Neuper, G. Pfurtscheller

ABSTRACT

A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment. More... »

PAGES

315-321

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02345286

DOI

http://dx.doi.org/10.1007/bf02345286

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019787159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11465886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fingers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Laboratory of Medical Physics, Warsaw University, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "P. J.", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Laboratory of Medical Physics, Warsaw University, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ircha", 
        "givenName": "D.", 
        "id": "sg:person.01047764240.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047764240.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Ludwig Boltzmann Institute of Medical Informatics & Neuroinformatics, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuper", 
        "givenName": "C.", 
        "id": "sg:person.01055527633.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055527633.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Department of Medical Informatics, Institute for Biomedical Engineering, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfurtscheller", 
        "givenName": "G.", 
        "id": "sg:person.01040327776.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040327776.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0013-4694(95)00258-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008041920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ph.55.030193.002025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011766244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(78)90107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(78)90107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(93)90886-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(93)90886-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(96)12796-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025049887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-7742(08)60333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026069779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(84)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(84)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(97)13358-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041113137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046629848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00141-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047824550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.905866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.1999.802528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093928099"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02345286", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation", 
    "pagination": "315-321", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e46da6d9845ec223f68e46d69708b111e2dc4d514e10f4892b92b317f0483d7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11465886"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02345286"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019787159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02345286", 
      "https://app.dimensions.ai/details/publication/pub.1019787159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02345286"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      49 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02345286 schema:about N0fbe6347cb7f42739b0a0956f68c6782
2 N36aa5a7e0b334383a3a83ce0fdc28958
3 N57449373a0cf4e8f9c5caa95c816022e
4 N81ebafc79f74454fb60f09e395598506
5 N981e956031b444aa949873393f600648
6 Na4a5048db7fc44fb90994dfd1fc3b2fc
7 Ndab0dddb1e70450aa771e385538f16a8
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N6896557af2c5424fbe0f74d065e06f96
11 schema:citation https://doi.org/10.1016/0013-4694(78)90107-4
12 https://doi.org/10.1016/0013-4694(95)00258-8
13 https://doi.org/10.1016/0168-5597(84)90045-5
14 https://doi.org/10.1016/0304-3940(93)90886-p
15 https://doi.org/10.1016/0304-3940(96)12796-8
16 https://doi.org/10.1016/s0074-7742(08)60333-5
17 https://doi.org/10.1016/s0304-3940(97)13358-4
18 https://doi.org/10.1016/s1388-2457(99)00141-8
19 https://doi.org/10.1016/s1388-2457(99)00175-3
20 https://doi.org/10.1109/78.258082
21 https://doi.org/10.1109/78.905866
22 https://doi.org/10.1109/iembs.1999.802528
23 https://doi.org/10.1146/annurev.ph.55.030193.002025
24 schema:datePublished 2001-05
25 schema:datePublishedReg 2001-05-01
26 schema:description A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N75b3e3c850734d9abef9abe08a55ada9
31 Nf60335388c1f4acfa4501afa2dd7735d
32 sg:journal.1005585
33 schema:name Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation
34 schema:pagination 315-321
35 schema:productId N6fa2212a94cb4bf395478635539a1d19
36 Ncaf54848a73340bfb2267100bab814d7
37 Nd991cb6303654957aa61af0ca97f82f1
38 Ne0890093dedb47729f68eee2f72b2e58
39 Nf6881ab56cc04cbd8a30842c217cfcbe
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019787159
41 https://doi.org/10.1007/bf02345286
42 schema:sdDatePublished 2019-04-11T12:58
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ne8f6ba1518a34867891188f4e6c338c9
45 schema:url http://link.springer.com/10.1007/BF02345286
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0fbe6347cb7f42739b0a0956f68c6782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Adult
51 rdf:type schema:DefinedTerm
52 N36aa5a7e0b334383a3a83ce0fdc28958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Fingers
54 rdf:type schema:DefinedTerm
55 N4d842d62581f4a7e915a26d629563aeb rdf:first sg:person.01055527633.30
56 rdf:rest Nc9b911f9868645559ba93a5dcf3edc1f
57 N57449373a0cf4e8f9c5caa95c816022e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Male
59 rdf:type schema:DefinedTerm
60 N6896557af2c5424fbe0f74d065e06f96 rdf:first sg:person.0724722444.23
61 rdf:rest Nc7ac09eaeeb94272bae14df9cef65916
62 N6fa2212a94cb4bf395478635539a1d19 schema:name pubmed_id
63 schema:value 11465886
64 rdf:type schema:PropertyValue
65 N75b3e3c850734d9abef9abe08a55ada9 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 N81ebafc79f74454fb60f09e395598506 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Electroencephalography
69 rdf:type schema:DefinedTerm
70 N981e956031b444aa949873393f600648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Signal Processing, Computer-Assisted
72 rdf:type schema:DefinedTerm
73 Na4a5048db7fc44fb90994dfd1fc3b2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 Nc7ac09eaeeb94272bae14df9cef65916 rdf:first sg:person.01047764240.17
77 rdf:rest N4d842d62581f4a7e915a26d629563aeb
78 Nc9b911f9868645559ba93a5dcf3edc1f rdf:first sg:person.01040327776.75
79 rdf:rest rdf:nil
80 Ncaf54848a73340bfb2267100bab814d7 schema:name nlm_unique_id
81 schema:value 7704869
82 rdf:type schema:PropertyValue
83 Nd991cb6303654957aa61af0ca97f82f1 schema:name doi
84 schema:value 10.1007/bf02345286
85 rdf:type schema:PropertyValue
86 Ndab0dddb1e70450aa771e385538f16a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Movement
88 rdf:type schema:DefinedTerm
89 Ne0890093dedb47729f68eee2f72b2e58 schema:name dimensions_id
90 schema:value pub.1019787159
91 rdf:type schema:PropertyValue
92 Ne8f6ba1518a34867891188f4e6c338c9 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nf60335388c1f4acfa4501afa2dd7735d schema:volumeNumber 39
95 rdf:type schema:PublicationVolume
96 Nf6881ab56cc04cbd8a30842c217cfcbe schema:name readcube_id
97 schema:value 5e46da6d9845ec223f68e46d69708b111e2dc4d514e10f4892b92b317f0483d7
98 rdf:type schema:PropertyValue
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
103 schema:name Statistics
104 rdf:type schema:DefinedTerm
105 sg:journal.1005585 schema:issn 1357-5481
106 1741-0444
107 schema:name Medical & Biological Engineering & Computing
108 rdf:type schema:Periodical
109 sg:person.01040327776.75 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
110 schema:familyName Pfurtscheller
111 schema:givenName G.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040327776.75
113 rdf:type schema:Person
114 sg:person.01047764240.17 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
115 schema:familyName Ircha
116 schema:givenName D.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047764240.17
118 rdf:type schema:Person
119 sg:person.01055527633.30 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
120 schema:familyName Neuper
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055527633.30
123 rdf:type schema:Person
124 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
125 schema:familyName Durka
126 schema:givenName P. J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
128 rdf:type schema:Person
129 https://doi.org/10.1016/0013-4694(78)90107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245166
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0013-4694(95)00258-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008041920
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0168-5597(84)90045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028446119
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0304-3940(93)90886-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1023730668
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0304-3940(96)12796-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025049887
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0074-7742(08)60333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026069779
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0304-3940(97)13358-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041113137
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1388-2457(99)00141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824550
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1388-2457(99)00175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629848
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/78.905866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231475
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/iembs.1999.802528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093928099
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1146/annurev.ph.55.030193.002025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011766244
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
156 schema:name Laboratory of Medical Physics, Warsaw University, Warsaw, Poland
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
159 schema:name Department of Medical Informatics, Institute for Biomedical Engineering, Graz University of Technology, Graz, Austria
160 Ludwig Boltzmann Institute of Medical Informatics & Neuroinformatics, Graz University of Technology, Graz, Austria
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...