Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

P. J. Durka, D. Ircha, C. Neuper, G. Pfurtscheller

ABSTRACT

A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment. More... »

PAGES

315-321

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02345286

DOI

http://dx.doi.org/10.1007/bf02345286

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019787159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11465886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fingers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Laboratory of Medical Physics, Warsaw University, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "P. J.", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Laboratory of Medical Physics, Warsaw University, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ircha", 
        "givenName": "D.", 
        "id": "sg:person.01047764240.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047764240.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Ludwig Boltzmann Institute of Medical Informatics & Neuroinformatics, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuper", 
        "givenName": "C.", 
        "id": "sg:person.01055527633.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055527633.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Department of Medical Informatics, Institute for Biomedical Engineering, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfurtscheller", 
        "givenName": "G.", 
        "id": "sg:person.01040327776.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040327776.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0013-4694(95)00258-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008041920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ph.55.030193.002025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011766244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(78)90107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(78)90107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(93)90886-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(93)90886-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(96)12796-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025049887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-7742(08)60333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026069779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(84)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(84)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(97)13358-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041113137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046629848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00141-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047824550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.905866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.1999.802528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093928099"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02345286", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation", 
    "pagination": "315-321", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e46da6d9845ec223f68e46d69708b111e2dc4d514e10f4892b92b317f0483d7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11465886"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02345286"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019787159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02345286", 
      "https://app.dimensions.ai/details/publication/pub.1019787159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02345286"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02345286'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      49 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02345286 schema:about N0c095f58ff204d1297e9d7b8d72f8ae0
2 N0dc6bc7ac10f411bbf23d238e0fd758c
3 N2f3883afed3742078041d70e7374719e
4 N6806a844cabd4c3b93890780932561c2
5 Nba9f1e4e00f949ec827d94d730c75e99
6 Nc7c0633990334e479fb18d5a20844cf1
7 Nf08e95b431b54b08b535f66308e9a428
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N66b4495ecbc64087883f50fa6a0f3a08
11 schema:citation https://doi.org/10.1016/0013-4694(78)90107-4
12 https://doi.org/10.1016/0013-4694(95)00258-8
13 https://doi.org/10.1016/0168-5597(84)90045-5
14 https://doi.org/10.1016/0304-3940(93)90886-p
15 https://doi.org/10.1016/0304-3940(96)12796-8
16 https://doi.org/10.1016/s0074-7742(08)60333-5
17 https://doi.org/10.1016/s0304-3940(97)13358-4
18 https://doi.org/10.1016/s1388-2457(99)00141-8
19 https://doi.org/10.1016/s1388-2457(99)00175-3
20 https://doi.org/10.1109/78.258082
21 https://doi.org/10.1109/78.905866
22 https://doi.org/10.1109/iembs.1999.802528
23 https://doi.org/10.1146/annurev.ph.55.030193.002025
24 schema:datePublished 2001-05
25 schema:datePublishedReg 2001-05-01
26 schema:description A new method is presented for the analysis of event-related EEG phenomena, in particular event related desynchronisation (ERD) and event related synchronisation (ERS) related to a voluntary movement; the method offers: high time-frequency resolution and, hence, increased ERD/ERS sensitivity (especially in the gamma band, where improvement can exceed an order of magnitude); the ability to analyse the whole picture of energy changes at once, without setting a priori the analysed frequency bands; and a parametric description of the signal's structures. The main idea is based upon averaging energy distributions of single EEG trials in the time-frequency plane. As the estimator for the signal's energy density, matching pursuit is chosen, with stochastic Gabor dictionaries. Other possible estimates are presented on a simulated signal and discussed briefly. The consistency of the results with previous findings is evaluated on the data from a classical voluntary finger movement experiment.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N83f74ce01792481fba24fc524d5cf716
31 Na71bc65fec3e4d8eb2ee9ae40ac645a1
32 sg:journal.1005585
33 schema:name Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation
34 schema:pagination 315-321
35 schema:productId N02793239057e454da7d6189f32c2b38f
36 N6510fafa9d51450ab5de1749b1394e01
37 N7393e431881b489c9777e295eb2fba20
38 N806295eb78d549f9882a64d184e036d8
39 Nce369ffbc64d45db946f3bc5cfdc9704
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019787159
41 https://doi.org/10.1007/bf02345286
42 schema:sdDatePublished 2019-04-11T12:58
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N34d1faf20b52406bb362161d50e6f20e
45 schema:url http://link.springer.com/10.1007/BF02345286
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N02793239057e454da7d6189f32c2b38f schema:name nlm_unique_id
50 schema:value 7704869
51 rdf:type schema:PropertyValue
52 N0c095f58ff204d1297e9d7b8d72f8ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Male
54 rdf:type schema:DefinedTerm
55 N0dc6bc7ac10f411bbf23d238e0fd758c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Fingers
57 rdf:type schema:DefinedTerm
58 N2b6c0d8b6fd44da5873acc3d745eef9e rdf:first sg:person.01040327776.75
59 rdf:rest rdf:nil
60 N2f3883afed3742078041d70e7374719e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Movement
62 rdf:type schema:DefinedTerm
63 N2f4fa7540d92436eb2ed1b440a20a7fd rdf:first sg:person.01055527633.30
64 rdf:rest N2b6c0d8b6fd44da5873acc3d745eef9e
65 N34d1faf20b52406bb362161d50e6f20e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N6510fafa9d51450ab5de1749b1394e01 schema:name doi
68 schema:value 10.1007/bf02345286
69 rdf:type schema:PropertyValue
70 N66b4495ecbc64087883f50fa6a0f3a08 rdf:first sg:person.0724722444.23
71 rdf:rest N76c9132c15af45b5be010a57abbeec7f
72 N6806a844cabd4c3b93890780932561c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Electroencephalography
74 rdf:type schema:DefinedTerm
75 N7393e431881b489c9777e295eb2fba20 schema:name dimensions_id
76 schema:value pub.1019787159
77 rdf:type schema:PropertyValue
78 N76c9132c15af45b5be010a57abbeec7f rdf:first sg:person.01047764240.17
79 rdf:rest N2f4fa7540d92436eb2ed1b440a20a7fd
80 N806295eb78d549f9882a64d184e036d8 schema:name readcube_id
81 schema:value 5e46da6d9845ec223f68e46d69708b111e2dc4d514e10f4892b92b317f0483d7
82 rdf:type schema:PropertyValue
83 N83f74ce01792481fba24fc524d5cf716 schema:volumeNumber 39
84 rdf:type schema:PublicationVolume
85 Na71bc65fec3e4d8eb2ee9ae40ac645a1 schema:issueNumber 3
86 rdf:type schema:PublicationIssue
87 Nba9f1e4e00f949ec827d94d730c75e99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Adult
89 rdf:type schema:DefinedTerm
90 Nc7c0633990334e479fb18d5a20844cf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Signal Processing, Computer-Assisted
92 rdf:type schema:DefinedTerm
93 Nce369ffbc64d45db946f3bc5cfdc9704 schema:name pubmed_id
94 schema:value 11465886
95 rdf:type schema:PropertyValue
96 Nf08e95b431b54b08b535f66308e9a428 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
103 schema:name Statistics
104 rdf:type schema:DefinedTerm
105 sg:journal.1005585 schema:issn 1357-5481
106 1741-0444
107 schema:name Medical & Biological Engineering & Computing
108 rdf:type schema:Periodical
109 sg:person.01040327776.75 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
110 schema:familyName Pfurtscheller
111 schema:givenName G.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040327776.75
113 rdf:type schema:Person
114 sg:person.01047764240.17 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
115 schema:familyName Ircha
116 schema:givenName D.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047764240.17
118 rdf:type schema:Person
119 sg:person.01055527633.30 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
120 schema:familyName Neuper
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055527633.30
123 rdf:type schema:Person
124 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
125 schema:familyName Durka
126 schema:givenName P. J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
128 rdf:type schema:Person
129 https://doi.org/10.1016/0013-4694(78)90107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245166
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0013-4694(95)00258-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008041920
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0168-5597(84)90045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028446119
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0304-3940(93)90886-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1023730668
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0304-3940(96)12796-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025049887
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0074-7742(08)60333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026069779
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0304-3940(97)13358-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041113137
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1388-2457(99)00141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824550
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1388-2457(99)00175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629848
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/78.905866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231475
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/iembs.1999.802528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093928099
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1146/annurev.ph.55.030193.002025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011766244
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
156 schema:name Laboratory of Medical Physics, Warsaw University, Warsaw, Poland
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
159 schema:name Department of Medical Informatics, Institute for Biomedical Engineering, Graz University of Technology, Graz, Austria
160 Ludwig Boltzmann Institute of Medical Informatics & Neuroinformatics, Graz University of Technology, Graz, Austria
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...