Non-linear analysis of the electroencephalogram for detecting effects of low-level electromagnetic fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-02

AUTHORS

M. Bachmann, J. Kalda, J. Lass, V. Tuulik, M. Säkki, H. Hinrikus

ABSTRACT

The study compared traditional spectral analysis and a new scale-invariant method, the analysis of the length distribution of low-variability periods (LDLVPs), to distinguish between electro-encephalogram (EEG) signals with and without a weak stressor, a low-level modulated microwave field. During the experiment, 23 healthy volunteers were exposed to a microwave (450 MHz) of 7 Hz frequency on-off modulation. The field power density at the scalp was 0.16 mW cm−2. The experimental protocol consisted of ten cycles of repetitive microwave exposure. Signals from frontal EEG channels FP1 and FP2 were analysed. Smooth power spectrum and length distribution curves of low-variability periods, as well as probability distribution close to normal, confirmed that stationarity of the EEG signal during recordings was achieved. The quantitative measure of LDLVPs provided a significant detection of the effect of the stressor for the six subjects exposed to the microwave field but for none of the sham recordings. The spectral analysis revealed a significant result for one subject only. A significant effect of the exposure to the EEG signal was detected in 25% of subjects, with microwave exposure increasing EEG variability. The effect was not detectable by power spectral measures. More... »

PAGES

142-149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02345136

DOI

http://dx.doi.org/10.1007/bf02345136

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016306633

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15742733


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electromagnetic Fields", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microwaves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Centre, Tallinn University of Technology, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Biomedical Engineering Centre, Tallinn University of Technology, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bachmann", 
        "givenName": "M.", 
        "id": "sg:person.01313621113.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313621113.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cybernetics, Tallinn University of Technology, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Institute of Cybernetics, Tallinn University of Technology, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalda", 
        "givenName": "J.", 
        "id": "sg:person.0636330213.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636330213.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Centre, Tallinn University of Technology, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Biomedical Engineering Centre, Tallinn University of Technology, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lass", 
        "givenName": "J.", 
        "id": "sg:person.01112256121.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112256121.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Centre, Tallinn University of Technology, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Biomedical Engineering Centre, Tallinn University of Technology, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuulik", 
        "givenName": "V.", 
        "id": "sg:person.01165234721.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165234721.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cybernetics, Tallinn University of Technology, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Institute of Cybernetics, Tallinn University of Technology, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e4kki", 
        "givenName": "M.", 
        "id": "sg:person.01370001042.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370001042.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Centre, Tallinn University of Technology, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Biomedical Engineering Centre, Tallinn University of Technology, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hinrikus", 
        "givenName": "H.", 
        "id": "sg:person.01275622221.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275622221.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02348091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051792134", 
          "https://doi.org/10.1007/bf02348091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02350993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020132414", 
          "https://doi.org/10.1007/bf02350993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02349981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010127477", 
          "https://doi.org/10.1007/bf02349981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942238", 
          "https://doi.org/10.1038/20924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02344701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039393797", 
          "https://doi.org/10.1007/bf02344701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00270757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005594783", 
          "https://doi.org/10.1007/bf00270757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029803732", 
          "https://doi.org/10.1007/bf00364139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "The study compared traditional spectral analysis and a new scale-invariant method, the analysis of the length distribution of low-variability periods (LDLVPs), to distinguish between electro-encephalogram (EEG) signals with and without a weak stressor, a low-level modulated microwave field. During the experiment, 23 healthy volunteers were exposed to a microwave (450 MHz) of 7 Hz frequency on-off modulation. The field power density at the scalp was 0.16 mW cm\u22122. The experimental protocol consisted of ten cycles of repetitive microwave exposure. Signals from frontal EEG channels FP1 and FP2 were analysed. Smooth power spectrum and length distribution curves of low-variability periods, as well as probability distribution close to normal, confirmed that stationarity of the EEG signal during recordings was achieved. The quantitative measure of LDLVPs provided a significant detection of the effect of the stressor for the six subjects exposed to the microwave field but for none of the sham recordings. The spectral analysis revealed a significant result for one subject only. A significant effect of the exposure to the EEG signal was detected in 25% of subjects, with microwave exposure increasing EEG variability. The effect was not detectable by power spectral measures.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02345136", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "non-linear analysis", 
      "power density", 
      "smooth power spectrum", 
      "traditional spectral analysis", 
      "microwave field", 
      "field power density", 
      "scale-invariant method", 
      "EEG signals", 
      "Hz frequency", 
      "length distribution curves", 
      "distribution curves", 
      "power spectrum", 
      "spectral analysis", 
      "field", 
      "electromagnetic field", 
      "microwave exposure", 
      "signals", 
      "microwave", 
      "mW", 
      "sham recordings", 
      "distribution", 
      "density", 
      "length distribution", 
      "effect", 
      "significant effect", 
      "analysis", 
      "experiments", 
      "cycle", 
      "probability distribution", 
      "method", 
      "curves", 
      "experimental protocol", 
      "frequency", 
      "quantitative measures", 
      "results", 
      "detection", 
      "significant results", 
      "recordings", 
      "electro-encephalogram", 
      "spectra", 
      "stationarity", 
      "low-level electromagnetic fields", 
      "study", 
      "power spectral measures", 
      "modulation", 
      "variability", 
      "period", 
      "exposure", 
      "measures", 
      "significant detection", 
      "spectral measure", 
      "protocol", 
      "FP1", 
      "electroencephalogram", 
      "scalp", 
      "FP2", 
      "subjects", 
      "healthy volunteers", 
      "EEG variability", 
      "weak stressor", 
      "stressors", 
      "channels FP1", 
      "volunteers", 
      "low-variability periods", 
      "new scale-invariant method", 
      "repetitive microwave exposure", 
      "frontal EEG channels FP1", 
      "EEG channels FP1", 
      "LDLVPs"
    ], 
    "name": "Non-linear analysis of the electroencephalogram for detecting effects of low-level electromagnetic fields", 
    "pagination": "142-149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016306633"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02345136"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15742733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02345136", 
      "https://app.dimensions.ai/details/publication/pub.1016306633"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_396.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02345136"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02345136'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02345136'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02345136'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02345136'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      22 PREDICATES      113 URIs      97 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02345136 schema:about N58aab94268be4714b2f2fa32e5684cf4
2 N62a09145db614be39dd9041137f402d5
3 N6a7308e3c8f047a2a20f7099073055c2
4 N7c17227e460947b5be2f4429bd353641
5 N83dbf0db5cf04b24bdcf0cdc55ee366d
6 N925e2e06da5f48698c56877cfca71daf
7 Nce078fe452f94f168ee83d4a2c9608e7
8 Nceb2dfe4325d4234a4f3a4dec1b8ec7c
9 Ne0375db9b01b4ab89b2716263e74c23d
10 anzsrc-for:09
11 anzsrc-for:0903
12 anzsrc-for:0906
13 schema:author N4533de21927346bfac6b3de53aa7408d
14 schema:citation sg:pub.10.1007/bf00270757
15 sg:pub.10.1007/bf00364139
16 sg:pub.10.1007/bf02344701
17 sg:pub.10.1007/bf02348091
18 sg:pub.10.1007/bf02349981
19 sg:pub.10.1007/bf02350993
20 sg:pub.10.1038/20924
21 schema:datePublished 2005-02
22 schema:datePublishedReg 2005-02-01
23 schema:description The study compared traditional spectral analysis and a new scale-invariant method, the analysis of the length distribution of low-variability periods (LDLVPs), to distinguish between electro-encephalogram (EEG) signals with and without a weak stressor, a low-level modulated microwave field. During the experiment, 23 healthy volunteers were exposed to a microwave (450 MHz) of 7 Hz frequency on-off modulation. The field power density at the scalp was 0.16 mW cm−2. The experimental protocol consisted of ten cycles of repetitive microwave exposure. Signals from frontal EEG channels FP1 and FP2 were analysed. Smooth power spectrum and length distribution curves of low-variability periods, as well as probability distribution close to normal, confirmed that stationarity of the EEG signal during recordings was achieved. The quantitative measure of LDLVPs provided a significant detection of the effect of the stressor for the six subjects exposed to the microwave field but for none of the sham recordings. The spectral analysis revealed a significant result for one subject only. A significant effect of the exposure to the EEG signal was detected in 25% of subjects, with microwave exposure increasing EEG variability. The effect was not detectable by power spectral measures.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N68f297120b424a83a5bcb60334db8bb9
28 N6c0467108d23437984ee339e775e11cb
29 sg:journal.1005585
30 schema:keywords EEG channels FP1
31 EEG signals
32 EEG variability
33 FP1
34 FP2
35 Hz frequency
36 LDLVPs
37 analysis
38 channels FP1
39 curves
40 cycle
41 density
42 detection
43 distribution
44 distribution curves
45 effect
46 electro-encephalogram
47 electroencephalogram
48 electromagnetic field
49 experimental protocol
50 experiments
51 exposure
52 field
53 field power density
54 frequency
55 frontal EEG channels FP1
56 healthy volunteers
57 length distribution
58 length distribution curves
59 low-level electromagnetic fields
60 low-variability periods
61 mW
62 measures
63 method
64 microwave
65 microwave exposure
66 microwave field
67 modulation
68 new scale-invariant method
69 non-linear analysis
70 period
71 power density
72 power spectral measures
73 power spectrum
74 probability distribution
75 protocol
76 quantitative measures
77 recordings
78 repetitive microwave exposure
79 results
80 scale-invariant method
81 scalp
82 sham recordings
83 signals
84 significant detection
85 significant effect
86 significant results
87 smooth power spectrum
88 spectra
89 spectral analysis
90 spectral measure
91 stationarity
92 stressors
93 study
94 subjects
95 traditional spectral analysis
96 variability
97 volunteers
98 weak stressor
99 schema:name Non-linear analysis of the electroencephalogram for detecting effects of low-level electromagnetic fields
100 schema:pagination 142-149
101 schema:productId N54681d90594e495488c49a46c512d4a4
102 N7d8bb5d35cde4edfa3c312246df7b70e
103 N837fbf35054744738a390c883ae27220
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016306633
105 https://doi.org/10.1007/bf02345136
106 schema:sdDatePublished 2021-12-01T19:16
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N5cf411fb2b714d5b889ac4f7769efccf
109 schema:url https://doi.org/10.1007/bf02345136
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N1e2bb0b198214770b6eb2027c73e9af9 rdf:first sg:person.01112256121.94
114 rdf:rest Nf9d1651402324a22bddc74a6339ded49
115 N4533de21927346bfac6b3de53aa7408d rdf:first sg:person.01313621113.57
116 rdf:rest Nc5452c81e1d84c04aaf1345e148f444b
117 N54681d90594e495488c49a46c512d4a4 schema:name pubmed_id
118 schema:value 15742733
119 rdf:type schema:PropertyValue
120 N58aab94268be4714b2f2fa32e5684cf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Brain
122 rdf:type schema:DefinedTerm
123 N5ce4ca5fd2f54ad89d792a560f71576a rdf:first sg:person.01275622221.56
124 rdf:rest rdf:nil
125 N5cf411fb2b714d5b889ac4f7769efccf schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N62a09145db614be39dd9041137f402d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Microwaves
129 rdf:type schema:DefinedTerm
130 N68f297120b424a83a5bcb60334db8bb9 schema:volumeNumber 43
131 rdf:type schema:PublicationVolume
132 N6a7308e3c8f047a2a20f7099073055c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 N6c0467108d23437984ee339e775e11cb schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 N7c17227e460947b5be2f4429bd353641 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Male
139 rdf:type schema:DefinedTerm
140 N7d8bb5d35cde4edfa3c312246df7b70e schema:name doi
141 schema:value 10.1007/bf02345136
142 rdf:type schema:PropertyValue
143 N837fbf35054744738a390c883ae27220 schema:name dimensions_id
144 schema:value pub.1016306633
145 rdf:type schema:PropertyValue
146 N83dbf0db5cf04b24bdcf0cdc55ee366d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Electroencephalography
148 rdf:type schema:DefinedTerm
149 N925e2e06da5f48698c56877cfca71daf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Female
151 rdf:type schema:DefinedTerm
152 Nc5452c81e1d84c04aaf1345e148f444b rdf:first sg:person.0636330213.49
153 rdf:rest N1e2bb0b198214770b6eb2027c73e9af9
154 Nce078fe452f94f168ee83d4a2c9608e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Signal Processing, Computer-Assisted
156 rdf:type schema:DefinedTerm
157 Nceb2dfe4325d4234a4f3a4dec1b8ec7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Adult
159 rdf:type schema:DefinedTerm
160 Ne003bc38ac6c421f81d8ae1bc2934efd rdf:first sg:person.01370001042.14
161 rdf:rest N5ce4ca5fd2f54ad89d792a560f71576a
162 Ne0375db9b01b4ab89b2716263e74c23d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Electromagnetic Fields
164 rdf:type schema:DefinedTerm
165 Nf9d1651402324a22bddc74a6339ded49 rdf:first sg:person.01165234721.37
166 rdf:rest Ne003bc38ac6c421f81d8ae1bc2934efd
167 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
168 schema:name Engineering
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biomedical Engineering
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
174 schema:name Electrical and Electronic Engineering
175 rdf:type schema:DefinedTerm
176 sg:journal.1005585 schema:issn 1357-5481
177 1741-0444
178 schema:name Medical & Biological Engineering & Computing
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01112256121.94 schema:affiliation grid-institutes:grid.6988.f
182 schema:familyName Lass
183 schema:givenName J.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112256121.94
185 rdf:type schema:Person
186 sg:person.01165234721.37 schema:affiliation grid-institutes:grid.6988.f
187 schema:familyName Tuulik
188 schema:givenName V.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165234721.37
190 rdf:type schema:Person
191 sg:person.01275622221.56 schema:affiliation grid-institutes:grid.6988.f
192 schema:familyName Hinrikus
193 schema:givenName H.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275622221.56
195 rdf:type schema:Person
196 sg:person.01313621113.57 schema:affiliation grid-institutes:grid.6988.f
197 schema:familyName Bachmann
198 schema:givenName M.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313621113.57
200 rdf:type schema:Person
201 sg:person.01370001042.14 schema:affiliation grid-institutes:grid.6988.f
202 schema:familyName Säkki
203 schema:givenName M.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370001042.14
205 rdf:type schema:Person
206 sg:person.0636330213.49 schema:affiliation grid-institutes:grid.6988.f
207 schema:familyName Kalda
208 schema:givenName J.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636330213.49
210 rdf:type schema:Person
211 sg:pub.10.1007/bf00270757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005594783
212 https://doi.org/10.1007/bf00270757
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/bf00364139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029803732
215 https://doi.org/10.1007/bf00364139
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/bf02344701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039393797
218 https://doi.org/10.1007/bf02344701
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/bf02348091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051792134
221 https://doi.org/10.1007/bf02348091
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/bf02349981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010127477
224 https://doi.org/10.1007/bf02349981
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/bf02350993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020132414
227 https://doi.org/10.1007/bf02350993
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/20924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942238
230 https://doi.org/10.1038/20924
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.6988.f schema:alternateName Biomedical Engineering Centre, Tallinn University of Technology, Estonia
233 Institute of Cybernetics, Tallinn University of Technology, Estonia
234 schema:name Biomedical Engineering Centre, Tallinn University of Technology, Estonia
235 Institute of Cybernetics, Tallinn University of Technology, Estonia
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...