Particle creation by black holes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1975-08

AUTHORS

S. W. Hawking

ABSTRACT

In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K$$ \end{document} where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. More... »

PAGES

199-220

References to SciGraph publications

  • 1972-06. Black holes in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1974-03. A new definition of conformal and projective infinity of space-times in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1968-12. Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1972-07. Floating Orbits, Superradiant Scattering and the Black-hole Bomb in NATURE
  • 1973-06. The four laws of black hole mechanics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02345020

    DOI

    http://dx.doi.org/10.1007/bf02345020

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010701796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "California Institute of Technology, W. K. Kellogg Radiation Lab. 106\u201338, 91125, Pasadena, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England", 
                "California Institute of Technology, W. K. Kellogg Radiation Lab. 106\u201338, 91125, Pasadena, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/238211a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008482090", 
              "https://doi.org/10.1038/238211a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047076173", 
              "https://doi.org/10.1007/bf01646026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038501185", 
              "https://doi.org/10.1007/bf01645742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03399503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101127207", 
              "https://doi.org/10.1007/bf03399503"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-08", 
        "datePublishedReg": "1975-08-01", 
        "description": "In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\frac{{h\\kappa }}{{2\\pi k}} \\approx 10^{ - 6} \\left( {\\frac{{M_ \\odot  }}{M}} \\right){}^ \\circ K$$\n\\end{document} where \u03ba is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02345020", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "black holes", 
          "event horizon", 
          "primordial black holes", 
          "entropy of matter", 
          "quantum mechanical effects", 
          "generalized second law", 
          "quantum effects", 
          "surface gravity", 
          "particle creation", 
          "gravitational collapse", 
          "thermal emission", 
          "holes", 
          "baryons", 
          "classical laws", 
          "hot body", 
          "mechanical effects", 
          "second law", 
          "particles", 
          "leptons", 
          "universe", 
          "mass", 
          "emission", 
          "entropy", 
          "gravity", 
          "slow decrease", 
          "eventual disappearance", 
          "matter", 
          "collapse", 
          "horizon", 
          "law", 
          "effect", 
          "surface area", 
          "creation", 
          "whereS", 
          "sum", 
          "disappearance", 
          "decrease", 
          "body", 
          "area", 
          "reasons"
        ], 
        "name": "Particle creation by black holes", 
        "pagination": "199-220", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010701796"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02345020"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02345020", 
          "https://app.dimensions.ai/details/publication/pub.1010701796"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_149.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02345020"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02345020'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02345020'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02345020'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02345020'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      70 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02345020 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Nc0ebac6e2e6f46559b6e85f0db7d264e
    4 schema:citation sg:pub.10.1007/bf01645742
    5 sg:pub.10.1007/bf01646026
    6 sg:pub.10.1007/bf01877517
    7 sg:pub.10.1007/bf03399503
    8 sg:pub.10.1038/238211a0
    9 schema:datePublished 1975-08
    10 schema:datePublishedReg 1975-08-01
    11 schema:description In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K$$ \end{document} where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N54a6462020d142d4b61dd7f9c8f82eb4
    15 Na39f9c96f95347f096dcf9b94395daf7
    16 sg:journal.1136216
    17 schema:keywords area
    18 baryons
    19 black holes
    20 body
    21 classical laws
    22 collapse
    23 creation
    24 decrease
    25 disappearance
    26 effect
    27 emission
    28 entropy
    29 entropy of matter
    30 event horizon
    31 eventual disappearance
    32 generalized second law
    33 gravitational collapse
    34 gravity
    35 holes
    36 horizon
    37 hot body
    38 law
    39 leptons
    40 mass
    41 matter
    42 mechanical effects
    43 particle creation
    44 particles
    45 primordial black holes
    46 quantum effects
    47 quantum mechanical effects
    48 reasons
    49 second law
    50 slow decrease
    51 sum
    52 surface area
    53 surface gravity
    54 thermal emission
    55 universe
    56 whereS
    57 schema:name Particle creation by black holes
    58 schema:pagination 199-220
    59 schema:productId N177251b28d694a5f9698c63d1e0c774f
    60 N4d359147c53840c3bccd1e5acd0d5159
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    62 https://doi.org/10.1007/bf02345020
    63 schema:sdDatePublished 2022-12-01T06:18
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N5208898541de413492057ded085bf3f1
    66 schema:url https://doi.org/10.1007/bf02345020
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N177251b28d694a5f9698c63d1e0c774f schema:name doi
    71 schema:value 10.1007/bf02345020
    72 rdf:type schema:PropertyValue
    73 N4d359147c53840c3bccd1e5acd0d5159 schema:name dimensions_id
    74 schema:value pub.1010701796
    75 rdf:type schema:PropertyValue
    76 N5208898541de413492057ded085bf3f1 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N54a6462020d142d4b61dd7f9c8f82eb4 schema:issueNumber 3
    79 rdf:type schema:PublicationIssue
    80 Na39f9c96f95347f096dcf9b94395daf7 schema:volumeNumber 43
    81 rdf:type schema:PublicationVolume
    82 Nc0ebac6e2e6f46559b6e85f0db7d264e rdf:first sg:person.012212614165.22
    83 rdf:rest rdf:nil
    84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Physical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Astronomical and Space Sciences
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1136216 schema:issn 0010-3616
    91 1432-0916
    92 schema:name Communications in Mathematical Physics
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.20861.3d
    96 schema:familyName Hawking
    97 schema:givenName S. W.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    99 rdf:type schema:Person
    100 sg:pub.10.1007/bf01645742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501185
    101 https://doi.org/10.1007/bf01645742
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf01646026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047076173
    104 https://doi.org/10.1007/bf01646026
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf01877517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    107 https://doi.org/10.1007/bf01877517
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf03399503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101127207
    110 https://doi.org/10.1007/bf03399503
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/238211a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008482090
    113 https://doi.org/10.1038/238211a0
    114 rdf:type schema:CreativeWork
    115 grid-institutes:grid.20861.3d schema:alternateName California Institute of Technology, W. K. Kellogg Radiation Lab. 106–38, 91125, Pasadena, California, USA
    116 schema:name California Institute of Technology, W. K. Kellogg Radiation Lab. 106–38, 91125, Pasadena, California, USA
    117 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...