A biologically plausible neural network for motion detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

Ken-ichiro Miura, Takashi Nagano

ABSTRACT

A neural network model is proposed that detects the actual velocity vector of an object by using local motion signals detected by local motion detectors. First, the computational theory to obtain the actual velocity vector of a rigid object is described. Then a neural network is shown that implements the theory. The neural network model is constructed by two layers: a local velocity vector extraction layer and an integration layer. Many velocity vectors of points on a moving object are detected by local detectors in the local velocity vector extraction layer. These local velocity vectors are integrated in the integration layer in order to obtain the actual velocity vector of the object. The computational processing pathway of the proposed model is similar to the motion processing pathway of visual stimulus in the actual nervous system. More... »

PAGES

4-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02332158

DOI

http://dx.doi.org/10.1007/bf02332158

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002515830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Department of Industrial and System Engineering, College of Engineering, Hosei University, 3-7-2 Kajinocho, Koganeishi, 184, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Ken-ichiro", 
        "id": "sg:person.01135752122.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Department of Industrial and System Engineering, College of Engineering, Hosei University, 3-7-2 Kajinocho, Koganeishi, 184, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Takashi", 
        "id": "sg:person.01034442456.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0004-3702(81)90024-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039049535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040688784", 
          "https://doi.org/10.1007/bf00274887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040688784", 
          "https://doi.org/10.1007/bf00274887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043342679", 
          "https://doi.org/10.1007/bf00224859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1965.sp007638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046300786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1959.sp006308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047763294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1974.sp010452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051123025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.4.001455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065165583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.10-10-03323.1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078482850"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-09", 
    "datePublishedReg": "1995-09-01", 
    "description": "A neural network model is proposed that detects the actual velocity vector of an object by using local motion signals detected by local motion detectors. First, the computational theory to obtain the actual velocity vector of a rigid object is described. Then a neural network is shown that implements the theory. The neural network model is constructed by two layers: a local velocity vector extraction layer and an integration layer. Many velocity vectors of points on a moving object are detected by local detectors in the local velocity vector extraction layer. These local velocity vectors are integrated in the integration layer in order to obtain the actual velocity vector of the object. The computational processing pathway of the proposed model is similar to the motion processing pathway of visual stimulus in the actual nervous system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02332158", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1132792", 
        "issn": [
          "1370-4621", 
          "1573-773X"
        ], 
        "name": "Neural Processing Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "A biologically plausible neural network for motion detection", 
    "pagination": "4-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0bfa74aae52ada5f4d65a9c7fd2fc241e11b213c5bfcb76f27f9ac60cb9ac759"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02332158"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002515830"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02332158", 
      "https://app.dimensions.ai/details/publication/pub.1002515830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71674_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02332158"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02332158'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02332158'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02332158'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02332158'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02332158 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N89bc90ce91034234b6168d398e712038
4 schema:citation sg:pub.10.1007/bf00224859
5 sg:pub.10.1007/bf00274887
6 https://doi.org/10.1016/0004-3702(81)90024-2
7 https://doi.org/10.1113/jphysiol.1959.sp006308
8 https://doi.org/10.1113/jphysiol.1965.sp007638
9 https://doi.org/10.1113/jphysiol.1974.sp010452
10 https://doi.org/10.1364/josaa.4.001455
11 https://doi.org/10.1523/jneurosci.10-10-03323.1990
12 schema:datePublished 1995-09
13 schema:datePublishedReg 1995-09-01
14 schema:description A neural network model is proposed that detects the actual velocity vector of an object by using local motion signals detected by local motion detectors. First, the computational theory to obtain the actual velocity vector of a rigid object is described. Then a neural network is shown that implements the theory. The neural network model is constructed by two layers: a local velocity vector extraction layer and an integration layer. Many velocity vectors of points on a moving object are detected by local detectors in the local velocity vector extraction layer. These local velocity vectors are integrated in the integration layer in order to obtain the actual velocity vector of the object. The computational processing pathway of the proposed model is similar to the motion processing pathway of visual stimulus in the actual nervous system.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N5039c9d5d07e41e993d1aef2cef4639d
19 N7594d7638c6b4c97b3333268aca1029d
20 sg:journal.1132792
21 schema:name A biologically plausible neural network for motion detection
22 schema:pagination 4-8
23 schema:productId N1831221788ac4879a363a8841092fc19
24 N27d9336a95b44469a1bb7f928508b496
25 Na2bfd85c46ac4b298a9dce0878f1f307
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002515830
27 https://doi.org/10.1007/bf02332158
28 schema:sdDatePublished 2019-04-11T12:57
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N1a1c2d534cc147be90fe33e7be225139
31 schema:url http://link.springer.com/10.1007%2FBF02332158
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1831221788ac4879a363a8841092fc19 schema:name dimensions_id
36 schema:value pub.1002515830
37 rdf:type schema:PropertyValue
38 N1a1c2d534cc147be90fe33e7be225139 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N27d9336a95b44469a1bb7f928508b496 schema:name doi
41 schema:value 10.1007/bf02332158
42 rdf:type schema:PropertyValue
43 N5039c9d5d07e41e993d1aef2cef4639d schema:issueNumber 5
44 rdf:type schema:PublicationIssue
45 N55c5c983ca8e42be9210646c9b5e2ea2 rdf:first sg:person.01034442456.31
46 rdf:rest rdf:nil
47 N7594d7638c6b4c97b3333268aca1029d schema:volumeNumber 2
48 rdf:type schema:PublicationVolume
49 N89bc90ce91034234b6168d398e712038 rdf:first sg:person.01135752122.35
50 rdf:rest N55c5c983ca8e42be9210646c9b5e2ea2
51 Na2bfd85c46ac4b298a9dce0878f1f307 schema:name readcube_id
52 schema:value 0bfa74aae52ada5f4d65a9c7fd2fc241e11b213c5bfcb76f27f9ac60cb9ac759
53 rdf:type schema:PropertyValue
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
60 sg:journal.1132792 schema:issn 1370-4621
61 1573-773X
62 schema:name Neural Processing Letters
63 rdf:type schema:Periodical
64 sg:person.01034442456.31 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
65 schema:familyName Nagano
66 schema:givenName Takashi
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31
68 rdf:type schema:Person
69 sg:person.01135752122.35 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
70 schema:familyName Miura
71 schema:givenName Ken-ichiro
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35
73 rdf:type schema:Person
74 sg:pub.10.1007/bf00224859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043342679
75 https://doi.org/10.1007/bf00224859
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf00274887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040688784
78 https://doi.org/10.1007/bf00274887
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0004-3702(81)90024-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039049535
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1113/jphysiol.1959.sp006308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047763294
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1113/jphysiol.1965.sp007638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046300786
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1113/jphysiol.1974.sp010452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051123025
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1364/josaa.4.001455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065165583
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1523/jneurosci.10-10-03323.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078482850
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
93 schema:name Department of Industrial and System Engineering, College of Engineering, Hosei University, 3-7-2 Kajinocho, Koganeishi, 184, Tokyo, Japan
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...