Full-field representation of discretely sampled surface deformation for displacement and strain analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

M. A. Sutton, J. L. Turner, H. A. Bruck, T. A. Chae

ABSTRACT

A detailed evaluation of the feasibility of determining displacements and displacement gradients from measured surface displacement fields is presented. An improved methodology for both the estimation and elimination of noise is proposed. The methodology is used to analyze the gradients for three tests: (1) uniform rotation, (2) uniform strain, and (3) crack-tip displacement fields. Results of the study indicate that the proposed methodology can be used to extract the underlying two-dimensional displacements and their corresponding gradients from the noisy data with reasonable accuracy. Specifically, it is shown that (a) the digital correlation method for acquiring displacement fields has an error in strain of approximately 150 μ strain at each point, (b) the average strain in a region of uniform strain has much less error, typically on the order of 20 μ strain, (c) the displacement ‘nolse’ present in digital correlation is very small, approximately 0.01 pixels, (d) the proposed methodology for reducing noise in the data is essential to the accurate evaluation of displacement gradients and (e) the successful evaluation of displacement and displacement gradients for all three cases indicates that the proposed methodology can be used both to quantify the displacement fields and to reasonably estimate the overall gradient trends. More... »

PAGES

168-177

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02327571

DOI

http://dx.doi.org/10.1007/bf02327571

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027833307


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Mechanical Engineering, University of South Carolina, 29208, Columbia, SC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sutton", 
        "givenName": "M. A.", 
        "id": "sg:person.01300522233.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300522233.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Firestone, Central Research Lab, 1100 Firestone Parkway, 44317, Akron, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turner", 
        "givenName": "J. L.", 
        "id": "sg:person.011753325775.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753325775.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "California Tech., Mall Code 105-50, 91125, Pasadena, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruck", 
        "givenName": "H. A.", 
        "id": "sg:person.01162074201.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162074201.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Savannah River Site, Building 773A A0249, 29803, Aiken, SC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chae", 
        "givenName": "T. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01404567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001100011", 
          "https://doi.org/10.1007/bf01404567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01404567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001100011", 
          "https://doi.org/10.1007/bf01404567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.941714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015605006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02318859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022647238", 
          "https://doi.org/10.1007/bf02318859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02318859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022647238", 
          "https://doi.org/10.1007/bf02318859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(87)90115-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023382618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(87)90115-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023382618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(86)90057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029701639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(86)90057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029701639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01437407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030088390", 
          "https://doi.org/10.1007/bf01437407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01437407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030088390", 
          "https://doi.org/10.1007/bf01437407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02326046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047850917", 
          "https://doi.org/10.1007/bf02326046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02326046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047850917", 
          "https://doi.org/10.1007/bf02326046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02321405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924313", 
          "https://doi.org/10.1007/bf02321405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02321405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924313", 
          "https://doi.org/10.1007/bf02321405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/03093247v133177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/03093247v133177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/03093247v133177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/stp26584s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088491929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-06", 
    "datePublishedReg": "1991-06-01", 
    "description": "A detailed evaluation of the feasibility of determining displacements and displacement gradients from measured surface displacement fields is presented. An improved methodology for both the estimation and elimination of noise is proposed. The methodology is used to analyze the gradients for three tests: (1) uniform rotation, (2) uniform strain, and (3) crack-tip displacement fields. Results of the study indicate that the proposed methodology can be used to extract the underlying two-dimensional displacements and their corresponding gradients from the noisy data with reasonable accuracy. Specifically, it is shown that (a) the digital correlation method for acquiring displacement fields has an error in strain of approximately 150 \u03bc strain at each point, (b) the average strain in a region of uniform strain has much less error, typically on the order of 20 \u03bc strain, (c) the displacement \u2018nolse\u2019 present in digital correlation is very small, approximately 0.01 pixels, (d) the proposed methodology for reducing noise in the data is essential to the accurate evaluation of displacement gradients and (e) the successful evaluation of displacement and displacement gradients for all three cases indicates that the proposed methodology can be used both to quantify the displacement fields and to reasonably estimate the overall gradient trends.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02327571", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039819", 
        "issn": [
          "0014-4851", 
          "1741-2765"
        ], 
        "name": "Experimental Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Full-field representation of discretely sampled surface deformation for displacement and strain analysis", 
    "pagination": "168-177", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8496d438705fc29fdd115772c86e01cf0f7c5cff49462239894e4ae20e4d1131"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02327571"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027833307"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02327571", 
      "https://app.dimensions.ai/details/publication/pub.1027833307"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72850_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02327571"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02327571'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02327571'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02327571'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02327571'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02327571 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0c6e220e9956433e93ce244cf338ea96
4 schema:citation sg:pub.10.1007/bf01404567
5 sg:pub.10.1007/bf01437407
6 sg:pub.10.1007/bf02318859
7 sg:pub.10.1007/bf02321405
8 sg:pub.10.1007/bf02326046
9 https://doi.org/10.1016/0045-7949(87)90115-5
10 https://doi.org/10.1016/0262-8856(86)90057-0
11 https://doi.org/10.1117/12.941714
12 https://doi.org/10.1243/03093247v133177
13 https://doi.org/10.1520/stp26584s
14 schema:datePublished 1991-06
15 schema:datePublishedReg 1991-06-01
16 schema:description A detailed evaluation of the feasibility of determining displacements and displacement gradients from measured surface displacement fields is presented. An improved methodology for both the estimation and elimination of noise is proposed. The methodology is used to analyze the gradients for three tests: (1) uniform rotation, (2) uniform strain, and (3) crack-tip displacement fields. Results of the study indicate that the proposed methodology can be used to extract the underlying two-dimensional displacements and their corresponding gradients from the noisy data with reasonable accuracy. Specifically, it is shown that (a) the digital correlation method for acquiring displacement fields has an error in strain of approximately 150 μ strain at each point, (b) the average strain in a region of uniform strain has much less error, typically on the order of 20 μ strain, (c) the displacement ‘nolse’ present in digital correlation is very small, approximately 0.01 pixels, (d) the proposed methodology for reducing noise in the data is essential to the accurate evaluation of displacement gradients and (e) the successful evaluation of displacement and displacement gradients for all three cases indicates that the proposed methodology can be used both to quantify the displacement fields and to reasonably estimate the overall gradient trends.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N8ef3b88743b848c6b86a4c46a98d726b
21 Nca1cdaa4ea5a43088c47ebf8c3fad693
22 sg:journal.1039819
23 schema:name Full-field representation of discretely sampled surface deformation for displacement and strain analysis
24 schema:pagination 168-177
25 schema:productId N1f8b61c57556447381d4ec116ae850d7
26 Na7287a919c9e4412978408d1da729323
27 Nf237061782d344e99ae3b6cdace81fc0
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027833307
29 https://doi.org/10.1007/bf02327571
30 schema:sdDatePublished 2019-04-11T12:53
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb290d77fd0c14b9896279bb127efd3fa
33 schema:url http://link.springer.com/10.1007%2FBF02327571
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0c6e220e9956433e93ce244cf338ea96 rdf:first sg:person.01300522233.16
38 rdf:rest Nb76d44fa45714c95b465c52d122e38d7
39 N14480c0979f74f3a8d0a760d6ff9e457 schema:affiliation N9fabca57642c4ad3b80a208fab760c7e
40 schema:familyName Chae
41 schema:givenName T. A.
42 rdf:type schema:Person
43 N1f8b61c57556447381d4ec116ae850d7 schema:name doi
44 schema:value 10.1007/bf02327571
45 rdf:type schema:PropertyValue
46 N2ecdefaba1ac484b8dd3c4241c3111c1 schema:name Firestone, Central Research Lab, 1100 Firestone Parkway, 44317, Akron, OH
47 rdf:type schema:Organization
48 N50a88d1ce7ae4429a72d8d8af1b49e69 schema:name California Tech., Mall Code 105-50, 91125, Pasadena, CA
49 rdf:type schema:Organization
50 N742ed7bbee924abea2f1e901e907d382 rdf:first sg:person.01162074201.39
51 rdf:rest Nc12076c9b2af462782b8cc773121fa2e
52 N8ef3b88743b848c6b86a4c46a98d726b schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 N9fabca57642c4ad3b80a208fab760c7e schema:name Savannah River Site, Building 773A A0249, 29803, Aiken, SC
55 rdf:type schema:Organization
56 Na7287a919c9e4412978408d1da729323 schema:name dimensions_id
57 schema:value pub.1027833307
58 rdf:type schema:PropertyValue
59 Nb290d77fd0c14b9896279bb127efd3fa schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nb76d44fa45714c95b465c52d122e38d7 rdf:first sg:person.011753325775.65
62 rdf:rest N742ed7bbee924abea2f1e901e907d382
63 Nc12076c9b2af462782b8cc773121fa2e rdf:first N14480c0979f74f3a8d0a760d6ff9e457
64 rdf:rest rdf:nil
65 Nca1cdaa4ea5a43088c47ebf8c3fad693 schema:volumeNumber 31
66 rdf:type schema:PublicationVolume
67 Nf237061782d344e99ae3b6cdace81fc0 schema:name readcube_id
68 schema:value 8496d438705fc29fdd115772c86e01cf0f7c5cff49462239894e4ae20e4d1131
69 rdf:type schema:PropertyValue
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:journal.1039819 schema:issn 0014-4851
77 1741-2765
78 schema:name Experimental Mechanics
79 rdf:type schema:Periodical
80 sg:person.01162074201.39 schema:affiliation N50a88d1ce7ae4429a72d8d8af1b49e69
81 schema:familyName Bruck
82 schema:givenName H. A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162074201.39
84 rdf:type schema:Person
85 sg:person.011753325775.65 schema:affiliation N2ecdefaba1ac484b8dd3c4241c3111c1
86 schema:familyName Turner
87 schema:givenName J. L.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753325775.65
89 rdf:type schema:Person
90 sg:person.01300522233.16 schema:affiliation https://www.grid.ac/institutes/grid.254567.7
91 schema:familyName Sutton
92 schema:givenName M. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300522233.16
94 rdf:type schema:Person
95 sg:pub.10.1007/bf01404567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001100011
96 https://doi.org/10.1007/bf01404567
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01437407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030088390
99 https://doi.org/10.1007/bf01437407
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02318859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022647238
102 https://doi.org/10.1007/bf02318859
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf02321405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051924313
105 https://doi.org/10.1007/bf02321405
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf02326046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047850917
108 https://doi.org/10.1007/bf02326046
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0045-7949(87)90115-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023382618
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0262-8856(86)90057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029701639
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1117/12.941714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015605006
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1243/03093247v133177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064446849
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1520/stp26584s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088491929
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.254567.7 schema:alternateName University of South Carolina
121 schema:name Department of Mechanical Engineering, University of South Carolina, 29208, Columbia, SC
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...