The numerical calculation of storage and loss compliance from creep data for linear viscoelastic materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-03

AUTHORS

F. R. Schwarzl

ABSTRACT

Numerical formulae are given for calculation of storage and loss compliance from the course of the creep compliance for linear viscoelastic materials. These formulae involve values of the creep compliance at times which are equally spaced on a logarithmic time scale. The ratio between succeeding times corresponds to a factor of two.A method is introduced by which bounds for the relative error of those formulae can be derived. These bounds depend on the value of the damping, tanδ. The calculation of the storage compliance is easier with the lower damping values. This calculation involves the value of the creep compliance at timet0=1/ω, and that of its derivative with respect to the logarithm of time in a rather narrow region aroundt0. In contrast the calculation of the loss compliance is more difficult with the lower damping values. This calculation involves the value of the derivative of the creep compliance with respect to the logarithm of time in a broad interval aroundt0. More... »

PAGES

6-17

References to SciGraph publications

  • 1968-08. A torsional creep apparatus in RHEOLOGICA ACTA
  • 1968-02. Über die Umrechnung viskoelastischer Funktionen in RHEOLOGICA ACTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02321350

    DOI

    http://dx.doi.org/10.1007/bf02321350

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026303633


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centraal Laboratorium TNO, Delft, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4858.1", 
              "name": [
                "Centraal Laboratorium TNO, Delft, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwarzl", 
            "givenName": "F. R.", 
            "id": "sg:person.014411505531.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411505531.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01985788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039340720", 
              "https://doi.org/10.1007/bf01985788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01970311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007405593", 
              "https://doi.org/10.1007/bf01970311"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1969-03", 
        "datePublishedReg": "1969-03-01", 
        "description": "Numerical formulae are given for calculation of storage and loss compliance from the course of the creep compliance for linear viscoelastic materials. These formulae involve values of the creep compliance at times which are equally spaced on a logarithmic time scale. The ratio between succeeding times corresponds to a factor of two.A method is introduced by which bounds for the relative error of those formulae can be derived. These bounds depend on the value of the damping, tan\u03b4. The calculation of the storage compliance is easier with the lower damping values. This calculation involves the value of the creep compliance at timet0=1/\u03c9, and that of its derivative with respect to the logarithm of time in a rather narrow region aroundt0. In contrast the calculation of the loss compliance is more difficult with the lower damping values. This calculation involves the value of the derivative of the creep compliance with respect to the logarithm of time in a broad interval aroundt0.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02321350", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050722", 
            "issn": [
              "0035-4511", 
              "1435-1528"
            ], 
            "name": "Rheologica Acta", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "low damping values", 
          "creep compliance", 
          "linear viscoelastic materials", 
          "viscoelastic materials", 
          "loss compliance", 
          "damping values", 
          "logarithm of time", 
          "creep data", 
          "numerical calculations", 
          "relative error", 
          "storage compliance", 
          "materials", 
          "logarithmic time scale", 
          "numerical formula", 
          "tan\u03b4", 
          "storage", 
          "damping", 
          "calculations", 
          "time scales", 
          "values", 
          "formula", 
          "time", 
          "respect", 
          "ratio", 
          "method", 
          "error", 
          "compliance", 
          "scale", 
          "bounds", 
          "logarithm", 
          "data", 
          "factors", 
          "derivatives", 
          "contrast", 
          "course", 
          "calculation of storage", 
          "narrow region aroundt0", 
          "region aroundt0", 
          "aroundt0", 
          "broad interval aroundt0", 
          "interval aroundt0"
        ], 
        "name": "The numerical calculation of storage and loss compliance from creep data for linear viscoelastic materials", 
        "pagination": "6-17", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026303633"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02321350"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02321350", 
          "https://app.dimensions.ai/details/publication/pub.1026303633"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_100.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02321350"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02321350'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02321350'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02321350'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02321350'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      22 PREDICATES      69 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02321350 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N0815b402249b4bfbbdc45fc64f620383
    4 schema:citation sg:pub.10.1007/bf01970311
    5 sg:pub.10.1007/bf01985788
    6 schema:datePublished 1969-03
    7 schema:datePublishedReg 1969-03-01
    8 schema:description Numerical formulae are given for calculation of storage and loss compliance from the course of the creep compliance for linear viscoelastic materials. These formulae involve values of the creep compliance at times which are equally spaced on a logarithmic time scale. The ratio between succeeding times corresponds to a factor of two.A method is introduced by which bounds for the relative error of those formulae can be derived. These bounds depend on the value of the damping, tanδ. The calculation of the storage compliance is easier with the lower damping values. This calculation involves the value of the creep compliance at timet0=1/ω, and that of its derivative with respect to the logarithm of time in a rather narrow region aroundt0. In contrast the calculation of the loss compliance is more difficult with the lower damping values. This calculation involves the value of the derivative of the creep compliance with respect to the logarithm of time in a broad interval aroundt0.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N63118e5524884f189ada33644f5c39da
    13 Ne874391612e94ced890187811e3183e9
    14 sg:journal.1050722
    15 schema:keywords aroundt0
    16 bounds
    17 broad interval aroundt0
    18 calculation of storage
    19 calculations
    20 compliance
    21 contrast
    22 course
    23 creep compliance
    24 creep data
    25 damping
    26 damping values
    27 data
    28 derivatives
    29 error
    30 factors
    31 formula
    32 interval aroundt0
    33 linear viscoelastic materials
    34 logarithm
    35 logarithm of time
    36 logarithmic time scale
    37 loss compliance
    38 low damping values
    39 materials
    40 method
    41 narrow region aroundt0
    42 numerical calculations
    43 numerical formula
    44 ratio
    45 region aroundt0
    46 relative error
    47 respect
    48 scale
    49 storage
    50 storage compliance
    51 tanδ
    52 time
    53 time scales
    54 values
    55 viscoelastic materials
    56 schema:name The numerical calculation of storage and loss compliance from creep data for linear viscoelastic materials
    57 schema:pagination 6-17
    58 schema:productId N6f9344691fb04bdca68fdcb91d1d33b8
    59 N82a07d32a4d5448b8ef605bea1cdd56b
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026303633
    61 https://doi.org/10.1007/bf02321350
    62 schema:sdDatePublished 2021-12-01T19:01
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N86437789c6f344f993c1ce9018c97b21
    65 schema:url https://doi.org/10.1007/bf02321350
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N0815b402249b4bfbbdc45fc64f620383 rdf:first sg:person.014411505531.36
    70 rdf:rest rdf:nil
    71 N63118e5524884f189ada33644f5c39da schema:volumeNumber 8
    72 rdf:type schema:PublicationVolume
    73 N6f9344691fb04bdca68fdcb91d1d33b8 schema:name doi
    74 schema:value 10.1007/bf02321350
    75 rdf:type schema:PropertyValue
    76 N82a07d32a4d5448b8ef605bea1cdd56b schema:name dimensions_id
    77 schema:value pub.1026303633
    78 rdf:type schema:PropertyValue
    79 N86437789c6f344f993c1ce9018c97b21 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Ne874391612e94ced890187811e3183e9 schema:issueNumber 1
    82 rdf:type schema:PublicationIssue
    83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Engineering
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Materials Engineering
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1050722 schema:issn 0035-4511
    90 1435-1528
    91 schema:name Rheologica Acta
    92 schema:publisher Springer Nature
    93 rdf:type schema:Periodical
    94 sg:person.014411505531.36 schema:affiliation grid-institutes:grid.4858.1
    95 schema:familyName Schwarzl
    96 schema:givenName F. R.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411505531.36
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf01970311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007405593
    100 https://doi.org/10.1007/bf01970311
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01985788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340720
    103 https://doi.org/10.1007/bf01985788
    104 rdf:type schema:CreativeWork
    105 grid-institutes:grid.4858.1 schema:alternateName Centraal Laboratorium TNO, Delft, Netherlands
    106 schema:name Centraal Laboratorium TNO, Delft, Netherlands
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...