Coefficient alpha and the internal structure of tests View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1951-09

AUTHORS

Lee J. Cronbach

ABSTRACT

A general formula (α) of which a special case is the Kuder-Richardson coefficient of equivalence is shown to be the mean of all split-half coefficients resulting from different splittings of a test. α is therefore an estimate of the correlation between two random samples of items from a universe of items like those in the test. α is found to be an appropriate index of equivalence and, except for very short tests, of the first-factor concentration in the test. Tests divisible into distinct subtests should be so divided before using the formula. The index\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar r_{ij} $$ \end{document}, derived from α, is shown to be an index of inter-item homogeneity. Comparison is made to the Guttman and Loevinger approaches. Parallel split coefficients are shown to be unnecessary for tests of common types. In designing tests, maximum interpretability of scores is obtained by increasing the first-factor concentration in any separately-scored subtest and avoiding substantial group-factor clusters within a subtest. Scalability is not a requisite. More... »

PAGES

297-334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02310555

DOI

http://dx.doi.org/10.1007/bf02310555

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002958101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.411030.7", 
          "name": [
            "University of Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cronbach", 
        "givenName": "Lee J.", 
        "id": "sg:person.013704476074.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704476074.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02288391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036325688", 
          "https://doi.org/10.1007/bf02288391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013556636", 
          "https://doi.org/10.1007/bf02290130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000331434", 
          "https://doi.org/10.1007/bf02288068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033497999", 
          "https://doi.org/10.1007/bf02288707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001146367", 
          "https://doi.org/10.1007/bf02289289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036772311", 
          "https://doi.org/10.1007/bf02289040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025268982", 
          "https://doi.org/10.1007/bf02289270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034970403", 
          "https://doi.org/10.1007/bf02288892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007623973", 
          "https://doi.org/10.1007/bf02288588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049117859", 
          "https://doi.org/10.1007/bf02288894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02287978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015096186", 
          "https://doi.org/10.1007/bf02287978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1951-09", 
    "datePublishedReg": "1951-09-01", 
    "description": "A general formula (\u03b1) of which a special case is the Kuder-Richardson coefficient of equivalence is shown to be the mean of all split-half coefficients resulting from different splittings of a test. \u03b1 is therefore an estimate of the correlation between two random samples of items from a universe of items like those in the test. \u03b1 is found to be an appropriate index of equivalence and, except for very short tests, of the first-factor concentration in the test. Tests divisible into distinct subtests should be so divided before using the formula. The index\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\bar r_{ij} $$\n\\end{document}, derived from \u03b1, is shown to be an index of inter-item homogeneity. Comparison is made to the Guttman and Loevinger approaches. Parallel split coefficients are shown to be unnecessary for tests of common types. In designing tests, maximum interpretability of scores is obtained by increasing the first-factor concentration in any separately-scored subtest and avoiding substantial group-factor clusters within a subtest. Scalability is not a requisite.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02310555", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "Kuder-Richardson coefficient", 
      "split-half coefficient", 
      "common type", 
      "random sample", 
      "Short Test", 
      "coefficient alpha", 
      "test", 
      "index", 
      "subtests", 
      "scores", 
      "appropriate index", 
      "alpha", 
      "concentration", 
      "items", 
      "cases", 
      "correlation", 
      "samples", 
      "types", 
      "comparison", 
      "means", 
      "requisite", 
      "maximum interpretability", 
      "estimates", 
      "Loevinger", 
      "clusters", 
      "homogeneity", 
      "coefficient", 
      "formula", 
      "equivalence", 
      "interpretability", 
      "universe of items", 
      "Guttman", 
      "split coefficients", 
      "internal structure", 
      "structure", 
      "different splittings", 
      "special case", 
      "splitting", 
      "general formula", 
      "scalability", 
      "universe"
    ], 
    "name": "Coefficient alpha and the internal structure of tests", 
    "pagination": "297-334", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002958101"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02310555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02310555", 
      "https://app.dimensions.ai/details/publication/pub.1002958101"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_62.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02310555"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02310555'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02310555'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02310555'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02310555'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      77 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02310555 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N0adad37eca454cccb0d27052b98a2c88
4 schema:citation sg:pub.10.1007/bf02287978
5 sg:pub.10.1007/bf02288068
6 sg:pub.10.1007/bf02288391
7 sg:pub.10.1007/bf02288588
8 sg:pub.10.1007/bf02288707
9 sg:pub.10.1007/bf02288892
10 sg:pub.10.1007/bf02288894
11 sg:pub.10.1007/bf02289040
12 sg:pub.10.1007/bf02289270
13 sg:pub.10.1007/bf02289289
14 sg:pub.10.1007/bf02290130
15 schema:datePublished 1951-09
16 schema:datePublishedReg 1951-09-01
17 schema:description A general formula (α) of which a special case is the Kuder-Richardson coefficient of equivalence is shown to be the mean of all split-half coefficients resulting from different splittings of a test. α is therefore an estimate of the correlation between two random samples of items from a universe of items like those in the test. α is found to be an appropriate index of equivalence and, except for very short tests, of the first-factor concentration in the test. Tests divisible into distinct subtests should be so divided before using the formula. The index\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar r_{ij} $$ \end{document}, derived from α, is shown to be an index of inter-item homogeneity. Comparison is made to the Guttman and Loevinger approaches. Parallel split coefficients are shown to be unnecessary for tests of common types. In designing tests, maximum interpretability of scores is obtained by increasing the first-factor concentration in any separately-scored subtest and avoiding substantial group-factor clusters within a subtest. Scalability is not a requisite.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N8041a2a0c0be49af887e27d8d486e286
21 Ncbb7668f219d450093ffbe3ebd5afdec
22 sg:journal.1017907
23 schema:keywords Guttman
24 Kuder-Richardson coefficient
25 Loevinger
26 Short Test
27 alpha
28 appropriate index
29 cases
30 clusters
31 coefficient
32 coefficient alpha
33 common type
34 comparison
35 concentration
36 correlation
37 different splittings
38 equivalence
39 estimates
40 formula
41 general formula
42 homogeneity
43 index
44 internal structure
45 interpretability
46 items
47 maximum interpretability
48 means
49 random sample
50 requisite
51 samples
52 scalability
53 scores
54 special case
55 split coefficients
56 split-half coefficient
57 splitting
58 structure
59 subtests
60 test
61 types
62 universe
63 universe of items
64 schema:name Coefficient alpha and the internal structure of tests
65 schema:pagination 297-334
66 schema:productId N36c49fd36786415da32437b6892d2e08
67 Nb17f7a7cf8ab441e8a1b6eab19cd08aa
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958101
69 https://doi.org/10.1007/bf02310555
70 schema:sdDatePublished 2022-10-01T06:39
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nce6b931bf58b4b7fa9e1308859236814
73 schema:url https://doi.org/10.1007/bf02310555
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0adad37eca454cccb0d27052b98a2c88 rdf:first sg:person.013704476074.07
78 rdf:rest rdf:nil
79 N36c49fd36786415da32437b6892d2e08 schema:name dimensions_id
80 schema:value pub.1002958101
81 rdf:type schema:PropertyValue
82 N8041a2a0c0be49af887e27d8d486e286 schema:volumeNumber 16
83 rdf:type schema:PublicationVolume
84 Nb17f7a7cf8ab441e8a1b6eab19cd08aa schema:name doi
85 schema:value 10.1007/bf02310555
86 rdf:type schema:PropertyValue
87 Ncbb7668f219d450093ffbe3ebd5afdec schema:issueNumber 3
88 rdf:type schema:PublicationIssue
89 Nce6b931bf58b4b7fa9e1308859236814 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
92 schema:name Psychology and Cognitive Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
95 schema:name Psychology
96 rdf:type schema:DefinedTerm
97 sg:journal.1017907 schema:issn 0033-3123
98 1860-0980
99 schema:name Psychometrika
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.013704476074.07 schema:affiliation grid-institutes:grid.411030.7
103 schema:familyName Cronbach
104 schema:givenName Lee J.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704476074.07
106 rdf:type schema:Person
107 sg:pub.10.1007/bf02287978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015096186
108 https://doi.org/10.1007/bf02287978
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02288068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000331434
111 https://doi.org/10.1007/bf02288068
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02288391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036325688
114 https://doi.org/10.1007/bf02288391
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02288588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007623973
117 https://doi.org/10.1007/bf02288588
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02288707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033497999
120 https://doi.org/10.1007/bf02288707
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02288892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034970403
123 https://doi.org/10.1007/bf02288892
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02288894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049117859
126 https://doi.org/10.1007/bf02288894
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02289040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036772311
129 https://doi.org/10.1007/bf02289040
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf02289270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025268982
132 https://doi.org/10.1007/bf02289270
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf02289289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001146367
135 https://doi.org/10.1007/bf02289289
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf02290130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013556636
138 https://doi.org/10.1007/bf02290130
139 rdf:type schema:CreativeWork
140 grid-institutes:grid.411030.7 schema:alternateName University of Illinois, USA
141 schema:name University of Illinois, USA
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...