A new estimator of the uniqueness in factor analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-12

AUTHORS

Masamori Ihara, Yutaka Kano

ABSTRACT

A closed form estimator of the uniqueness (unique variance) in factor analysis is proposed. It has analytically desirable properties—consistency, asymptotic normality and scale invariance. The estimation procedure is given through the application to the two sets of Emmett's data and Holzinger and Swineford's data. The new estimator is shown to lead to values rather close to the maximum likelihood estimator. More... »

PAGES

563-566

Journal

TITLE

Psychometrika

ISSUE

4

VOLUME

51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02295595

DOI

http://dx.doi.org/10.1007/bf02295595

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048722333


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka Electro-Communication University", 
          "id": "https://www.grid.ac/institutes/grid.444451.4", 
          "name": [
            "Osaka Electro-Communication University, 18-8 Hatsumachi, 572, Neyagawa city, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ihara", 
        "givenName": "Masamori", 
        "id": "sg:person.013250032655.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013250032655.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Marine Technical College, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kano", 
        "givenName": "Yutaka", 
        "id": "sg:person.011517506761.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517506761.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/cbo9780511897375.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022286427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1949.tb00270.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048579937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109489408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489408", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-12", 
    "datePublishedReg": "1986-12-01", 
    "description": "A closed form estimator of the uniqueness (unique variance) in factor analysis is proposed. It has analytically desirable properties\u2014consistency, asymptotic normality and scale invariance. The estimation procedure is given through the application to the two sets of Emmett's data and Holzinger and Swineford's data. The new estimator is shown to lead to values rather close to the maximum likelihood estimator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02295595", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "A new estimator of the uniqueness in factor analysis", 
    "pagination": "563-566", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e81ab10617699d5793c97ff677d199115fcef63e50b73af472ebda0960780412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02295595"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048722333"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02295595", 
      "https://app.dimensions.ai/details/publication/pub.1048722333"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000594.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02295595"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02295595'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02295595'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02295595'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02295595'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02295595 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N64970a7d3d524af28f4234ccd791ddc5
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109489408
5 https://doi.org/10.1002/9780470316436
6 https://doi.org/10.1017/cbo9780511897375.003
7 https://doi.org/10.1111/j.2044-8317.1949.tb00270.x
8 schema:datePublished 1986-12
9 schema:datePublishedReg 1986-12-01
10 schema:description A closed form estimator of the uniqueness (unique variance) in factor analysis is proposed. It has analytically desirable properties—consistency, asymptotic normality and scale invariance. The estimation procedure is given through the application to the two sets of Emmett's data and Holzinger and Swineford's data. The new estimator is shown to lead to values rather close to the maximum likelihood estimator.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N41bb4d74de6048fc90f9a64ca0115d15
15 Nf7e63c2357ff4bd4ad2a6243fbfb6e6f
16 sg:journal.1017907
17 schema:name A new estimator of the uniqueness in factor analysis
18 schema:pagination 563-566
19 schema:productId N0e08403a48334bbd91457f7f4aa30402
20 N2c9145f18ac04e1c803b991d75b7897f
21 Nd9234668e54741b38c8d534eb033b26e
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048722333
23 https://doi.org/10.1007/bf02295595
24 schema:sdDatePublished 2019-04-10T16:54
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Ndc12716f515e401e93954dfa94c05932
27 schema:url http://link.springer.com/10.1007%2FBF02295595
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N0e08403a48334bbd91457f7f4aa30402 schema:name readcube_id
32 schema:value e81ab10617699d5793c97ff677d199115fcef63e50b73af472ebda0960780412
33 rdf:type schema:PropertyValue
34 N2c9145f18ac04e1c803b991d75b7897f schema:name doi
35 schema:value 10.1007/bf02295595
36 rdf:type schema:PropertyValue
37 N41bb4d74de6048fc90f9a64ca0115d15 schema:issueNumber 4
38 rdf:type schema:PublicationIssue
39 N64970a7d3d524af28f4234ccd791ddc5 rdf:first sg:person.013250032655.01
40 rdf:rest N9413f35d43f844f38a8cd732701a80d0
41 N9413f35d43f844f38a8cd732701a80d0 rdf:first sg:person.011517506761.89
42 rdf:rest rdf:nil
43 Nb3d6db6829984578a224ac7d9f2c78f6 schema:name Marine Technical College, Japan
44 rdf:type schema:Organization
45 Nd9234668e54741b38c8d534eb033b26e schema:name dimensions_id
46 schema:value pub.1048722333
47 rdf:type schema:PropertyValue
48 Ndc12716f515e401e93954dfa94c05932 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nf7e63c2357ff4bd4ad2a6243fbfb6e6f schema:volumeNumber 51
51 rdf:type schema:PublicationVolume
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
56 schema:name Statistics
57 rdf:type schema:DefinedTerm
58 sg:journal.1017907 schema:issn 0033-3123
59 1860-0980
60 schema:name Psychometrika
61 rdf:type schema:Periodical
62 sg:person.011517506761.89 schema:affiliation Nb3d6db6829984578a224ac7d9f2c78f6
63 schema:familyName Kano
64 schema:givenName Yutaka
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517506761.89
66 rdf:type schema:Person
67 sg:person.013250032655.01 schema:affiliation https://www.grid.ac/institutes/grid.444451.4
68 schema:familyName Ihara
69 schema:givenName Masamori
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013250032655.01
71 rdf:type schema:Person
72 https://app.dimensions.ai/details/publication/pub.1109489408 schema:CreativeWork
73 https://doi.org/10.1002/9780470316436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489408
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1017/cbo9780511897375.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022286427
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1111/j.2044-8317.1949.tb00270.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048579937
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.444451.4 schema:alternateName Osaka Electro-Communication University
80 schema:name Osaka Electro-Communication University, 18-8 Hatsumachi, 572, Neyagawa city, Japan
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...