The polyserial correlation coefficient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-09

AUTHORS

Ulf Olsson, Fritz Drasgow, Neil J. Dorans

ABSTRACT

The polyserial and point polyserial correlations are discussed as generalizations of the biserial and point biserial correlations. The relationship between the polyserial and point polyserial correlation is derived. The maximum likelihood estimator of the polyserial correlation is compared with a two-step estimator and with a computationally convenient ad hoc estimator. All three estimators perform reasonably well in a Monte Carlo simulation. Some practical applications of the polyserial correlation are described. More... »

PAGES

337-347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02294164

DOI

http://dx.doi.org/10.1007/bf02294164

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027160560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish University of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.6341.0", 
          "name": [
            "Department of Economics and Statistics, The Swedish University of Agricultural Sciences, S-750 07, Uppsala 7, Sweden", 
            "Department of Economics and Statistics, The Swedish University of Agricultural Sciences, S-750 07, Uppsala 7, North America"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olsson", 
        "givenName": "Ulf", 
        "id": "sg:person.011641176226.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011641176226.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Yale University, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drasgow", 
        "givenName": "Fritz", 
        "id": "sg:person.01126310151.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126310151.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Educational Testing Service", 
          "id": "https://www.grid.ac/institutes/grid.286674.9", 
          "name": [
            "Educational Testing Service, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorans", 
        "givenName": "Neil J.", 
        "id": "sg:person.07546213652.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546213652.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02288896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000946825", 
          "https://doi.org/10.1007/bf02288896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000946825", 
          "https://doi.org/10.1007/bf02288896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013309996", 
          "https://doi.org/10.1007/bf02289604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013309996", 
          "https://doi.org/10.1007/bf02289604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949657208810003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037845153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043111108", 
          "https://doi.org/10.1007/bf02296207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1955.10501293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2527476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069973449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ad0029741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091998200"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-09", 
    "datePublishedReg": "1982-09-01", 
    "description": "The polyserial and point polyserial correlations are discussed as generalizations of the biserial and point biserial correlations. The relationship between the polyserial and point polyserial correlation is derived. The maximum likelihood estimator of the polyserial correlation is compared with a two-step estimator and with a computationally convenient ad hoc estimator. All three estimators perform reasonably well in a Monte Carlo simulation. Some practical applications of the polyserial correlation are described.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02294164", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "The polyserial correlation coefficient", 
    "pagination": "337-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8161f3bfd27b4a15c436187028fb6d11295f36f250dc91a00c8df6b8cfd1e39e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02294164"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027160560"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02294164", 
      "https://app.dimensions.ai/details/publication/pub.1027160560"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02294164"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02294164'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02294164'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02294164'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02294164'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02294164 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7493ec33b49f47e7824e0214d9b63574
4 schema:citation sg:pub.10.1007/bf02288896
5 sg:pub.10.1007/bf02289604
6 sg:pub.10.1007/bf02296207
7 https://doi.org/10.1080/00949657208810003
8 https://doi.org/10.1080/01621459.1955.10501293
9 https://doi.org/10.21236/ad0029741
10 https://doi.org/10.2307/2527476
11 https://doi.org/10.2307/2529626
12 schema:datePublished 1982-09
13 schema:datePublishedReg 1982-09-01
14 schema:description The polyserial and point polyserial correlations are discussed as generalizations of the biserial and point biserial correlations. The relationship between the polyserial and point polyserial correlation is derived. The maximum likelihood estimator of the polyserial correlation is compared with a two-step estimator and with a computationally convenient ad hoc estimator. All three estimators perform reasonably well in a Monte Carlo simulation. Some practical applications of the polyserial correlation are described.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N25eff6c2e18044afb0a73e4bf456585e
19 N9d0a10366ee64e398e687216e1330347
20 sg:journal.1017907
21 schema:name The polyserial correlation coefficient
22 schema:pagination 337-347
23 schema:productId N764deec0da554c70ab1a02bc912bf1fc
24 N76629e45b2614c848f373decea2b3388
25 Ne89019b51bc44ea48a354c406bc1ea25
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027160560
27 https://doi.org/10.1007/bf02294164
28 schema:sdDatePublished 2019-04-11T01:05
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Ndd30afa6e9cc4a1a9b4e8440b3561416
31 schema:url http://link.springer.com/10.1007%2FBF02294164
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N25eff6c2e18044afb0a73e4bf456585e schema:issueNumber 3
36 rdf:type schema:PublicationIssue
37 N5c458583439041d1ae8d86a9de7012ad rdf:first sg:person.01126310151.18
38 rdf:rest Nb59d9e463c2e4d4e98be4d7ca097242b
39 N7493ec33b49f47e7824e0214d9b63574 rdf:first sg:person.011641176226.26
40 rdf:rest N5c458583439041d1ae8d86a9de7012ad
41 N764deec0da554c70ab1a02bc912bf1fc schema:name dimensions_id
42 schema:value pub.1027160560
43 rdf:type schema:PropertyValue
44 N76629e45b2614c848f373decea2b3388 schema:name readcube_id
45 schema:value 8161f3bfd27b4a15c436187028fb6d11295f36f250dc91a00c8df6b8cfd1e39e
46 rdf:type schema:PropertyValue
47 N9d0a10366ee64e398e687216e1330347 schema:volumeNumber 47
48 rdf:type schema:PublicationVolume
49 Nb3562a607fae478b963ffd605bc776b4 schema:name Yale University, Israel
50 rdf:type schema:Organization
51 Nb59d9e463c2e4d4e98be4d7ca097242b rdf:first sg:person.07546213652.96
52 rdf:rest rdf:nil
53 Ndd30afa6e9cc4a1a9b4e8440b3561416 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Ne89019b51bc44ea48a354c406bc1ea25 schema:name doi
56 schema:value 10.1007/bf02294164
57 rdf:type schema:PropertyValue
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1017907 schema:issn 0033-3123
65 1860-0980
66 schema:name Psychometrika
67 rdf:type schema:Periodical
68 sg:person.01126310151.18 schema:affiliation Nb3562a607fae478b963ffd605bc776b4
69 schema:familyName Drasgow
70 schema:givenName Fritz
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126310151.18
72 rdf:type schema:Person
73 sg:person.011641176226.26 schema:affiliation https://www.grid.ac/institutes/grid.6341.0
74 schema:familyName Olsson
75 schema:givenName Ulf
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011641176226.26
77 rdf:type schema:Person
78 sg:person.07546213652.96 schema:affiliation https://www.grid.ac/institutes/grid.286674.9
79 schema:familyName Dorans
80 schema:givenName Neil J.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546213652.96
82 rdf:type schema:Person
83 sg:pub.10.1007/bf02288896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000946825
84 https://doi.org/10.1007/bf02288896
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02289604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013309996
87 https://doi.org/10.1007/bf02289604
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02296207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043111108
90 https://doi.org/10.1007/bf02296207
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1080/00949657208810003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037845153
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/01621459.1955.10501293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299234
95 rdf:type schema:CreativeWork
96 https://doi.org/10.21236/ad0029741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091998200
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2307/2527476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069973449
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2307/2529626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975255
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.286674.9 schema:alternateName Educational Testing Service
103 schema:name Educational Testing Service, USA
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.6341.0 schema:alternateName Swedish University of Agricultural Sciences
106 schema:name Department of Economics and Statistics, The Swedish University of Agricultural Sciences, S-750 07, Uppsala 7, North America
107 Department of Economics and Statistics, The Swedish University of Agricultural Sciences, S-750 07, Uppsala 7, Sweden
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...