A monte carlo study of thirty internal criterion measures for cluster analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-06

AUTHORS

Glenn W. Milligan

ABSTRACT

A Monte Carlo evaluation of thirty internal criterion measures for cluster analysis was conducted. Artificial data sets were constructed with clusters which exhibited the properties of internal cohesion and external isolation. The data sets were analyzed by four hierarchical clustering methods. The resulting values of the internal criteria were compared with two external criterion indices which determined the degree of recovery of correct cluster structure by the algorithms. The results indicated that a subset of internal criterion measures could be identified which appear to be valid indices of correct cluster recovery. Indices from this subset could form the basis of a permutation test for the existence of cluster structure or a clustering algorithm. More... »

PAGES

187-199

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02293899

DOI

http://dx.doi.org/10.1007/bf02293899

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008979876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Faculty of Management Sciences, The Ohio State University, 356 Hagerty Hall, 43210, Columbus, Ohio"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milligan", 
        "givenName": "Glenn W.", 
        "id": "sg:person.0724105645.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724105645.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1037/0033-2909.83.6.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003572602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327906mbr1403_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007334311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(79)90020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012705530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(79)90020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012705530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.83.3.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023264680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5915.1980.tb01168.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025064123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.05.110174.000533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031628490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/14.2.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033556646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037645608", 
          "https://doi.org/10.1007/bf02293907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041776510", 
          "https://doi.org/10.1007/bf02289588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041776510", 
          "https://doi.org/10.1007/bf02289588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(80)90001-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046710985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(80)90001-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046710985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(79)90001-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048888201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(79)90001-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048888201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1967.10500923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1971.10482356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1975.10480256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3150815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070213248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1976.11980738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101246085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2344237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103088593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2344237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103088593"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-06", 
    "datePublishedReg": "1981-06-01", 
    "description": "A Monte Carlo evaluation of thirty internal criterion measures for cluster analysis was conducted. Artificial data sets were constructed with clusters which exhibited the properties of internal cohesion and external isolation. The data sets were analyzed by four hierarchical clustering methods. The resulting values of the internal criteria were compared with two external criterion indices which determined the degree of recovery of correct cluster structure by the algorithms. The results indicated that a subset of internal criterion measures could be identified which appear to be valid indices of correct cluster recovery. Indices from this subset could form the basis of a permutation test for the existence of cluster structure or a clustering algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02293899", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "A monte carlo study of thirty internal criterion measures for cluster analysis", 
    "pagination": "187-199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ac7b19fdebd32d4526ae761774a4b15f3148f273956e742a63aff6b6c23c9e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02293899"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008979876"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02293899", 
      "https://app.dimensions.ai/details/publication/pub.1008979876"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02293899"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02293899'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02293899'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02293899'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02293899'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02293899 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1c570e823815406196309d1f571d27bc
4 schema:citation sg:pub.10.1007/bf02289588
5 sg:pub.10.1007/bf02293907
6 https://doi.org/10.1016/0031-3203(80)90001-1
7 https://doi.org/10.1016/0098-3004(79)90001-3
8 https://doi.org/10.1016/0098-3004(79)90020-7
9 https://doi.org/10.1037/0033-2909.83.3.377
10 https://doi.org/10.1037/0033-2909.83.6.1072
11 https://doi.org/10.1080/00224065.1976.11980738
12 https://doi.org/10.1080/01621459.1967.10500923
13 https://doi.org/10.1080/01621459.1971.10482356
14 https://doi.org/10.1080/01621459.1975.10480256
15 https://doi.org/10.1093/comjnl/14.2.157
16 https://doi.org/10.1111/j.1540-5915.1980.tb01168.x
17 https://doi.org/10.1146/annurev.es.05.110174.000533
18 https://doi.org/10.1207/s15327906mbr1403_6
19 https://doi.org/10.2307/2344237
20 https://doi.org/10.2307/2412038
21 https://doi.org/10.2307/3150815
22 schema:datePublished 1981-06
23 schema:datePublishedReg 1981-06-01
24 schema:description A Monte Carlo evaluation of thirty internal criterion measures for cluster analysis was conducted. Artificial data sets were constructed with clusters which exhibited the properties of internal cohesion and external isolation. The data sets were analyzed by four hierarchical clustering methods. The resulting values of the internal criteria were compared with two external criterion indices which determined the degree of recovery of correct cluster structure by the algorithms. The results indicated that a subset of internal criterion measures could be identified which appear to be valid indices of correct cluster recovery. Indices from this subset could form the basis of a permutation test for the existence of cluster structure or a clustering algorithm.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N1cd2d6c555544ac19b406a77fc5963d7
29 N6c5e602d8b6945b7bfa4b68ff16bf3f7
30 sg:journal.1017907
31 schema:name A monte carlo study of thirty internal criterion measures for cluster analysis
32 schema:pagination 187-199
33 schema:productId N8894e6b16a824f609bafc0b3f3d40062
34 Naa18f86f346847d0a946e8c4e2cafa5e
35 Nc1a3070ee8154bc1bf5192cc87ba287f
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008979876
37 https://doi.org/10.1007/bf02293899
38 schema:sdDatePublished 2019-04-10T23:18
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ncb763dfb55f44c3d9175db267d63082f
41 schema:url http://link.springer.com/10.1007/BF02293899
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1c570e823815406196309d1f571d27bc rdf:first sg:person.0724105645.42
46 rdf:rest rdf:nil
47 N1cd2d6c555544ac19b406a77fc5963d7 schema:volumeNumber 46
48 rdf:type schema:PublicationVolume
49 N6c5e602d8b6945b7bfa4b68ff16bf3f7 schema:issueNumber 2
50 rdf:type schema:PublicationIssue
51 N8894e6b16a824f609bafc0b3f3d40062 schema:name dimensions_id
52 schema:value pub.1008979876
53 rdf:type schema:PropertyValue
54 Naa18f86f346847d0a946e8c4e2cafa5e schema:name doi
55 schema:value 10.1007/bf02293899
56 rdf:type schema:PropertyValue
57 Nc1a3070ee8154bc1bf5192cc87ba287f schema:name readcube_id
58 schema:value 2ac7b19fdebd32d4526ae761774a4b15f3148f273956e742a63aff6b6c23c9e0
59 rdf:type schema:PropertyValue
60 Ncb763dfb55f44c3d9175db267d63082f schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:journal.1017907 schema:issn 0033-3123
69 1860-0980
70 schema:name Psychometrika
71 rdf:type schema:Periodical
72 sg:person.0724105645.42 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
73 schema:familyName Milligan
74 schema:givenName Glenn W.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724105645.42
76 rdf:type schema:Person
77 sg:pub.10.1007/bf02289588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041776510
78 https://doi.org/10.1007/bf02289588
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02293907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037645608
81 https://doi.org/10.1007/bf02293907
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0031-3203(80)90001-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046710985
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0098-3004(79)90001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048888201
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0098-3004(79)90020-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012705530
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1037/0033-2909.83.3.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023264680
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1037/0033-2909.83.6.1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003572602
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1080/00224065.1976.11980738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101246085
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/01621459.1967.10500923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300213
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/01621459.1971.10482356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300829
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/01621459.1975.10480256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301435
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1093/comjnl/14.2.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033556646
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1111/j.1540-5915.1980.tb01168.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025064123
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1146/annurev.es.05.110174.000533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031628490
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1207/s15327906mbr1403_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007334311
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2307/2344237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103088593
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2307/2412038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920539
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2307/3150815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070213248
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.261331.4 schema:alternateName The Ohio State University
116 schema:name Faculty of Management Sciences, The Ohio State University, 356 Hagerty Hall, 43210, Columbus, Ohio
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...