Tautomerism of xanthine: The second-order MØller-Plesset study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-08

AUTHORS

Jiři šponer, Jerzy Leszczyński

ABSTRACT

Four 9H and four 7H tautomers of DNA base xanthine were studied by the ab initio LCAO-MO method at the MP2/6-311G**//HF/6-31G** and MP2/6-31G**//HF/6-31G** approximations. All calculated structures are minima at the HF/6-31G** potential energy surface with the dioxo 7H tautomer (A1) being the global minimum. The second most stable tautomer, dioxo-9H (B1) is by 9 kcal/mol less stable. For the A1 → B1 transition the calculated MP2 energy gap corresponds to the equilibrium constant of 2 × 10−7. Therefore, only the major tautomeric form A1 is predicted to be detectable in the gas phase. The 7H and 9H groups of tautomers are discussed separately. Within both groups, the dioxo form (A1-7H, B1-9H) is the most stable one and is succeeded by the 2-dihydroxy (A2, B2) form. However, while the energy difference between A1 and A2 is 10 kcal/mol, the energy difference between B1 a B2 is only 2 kcal/mol. The effect of polar environment was estimated by the SCRF method, using a spherical cavity, at the HF/6-31G** level. These calculations did not change the gas phase stability order of the tautomers. However, the energy difference between A1 and B1 decreased from 9 kcal/mol at the HF/6-31G** level to 4 kcal/mol at the SCRF HF/6-31G** level. More... »

PAGES

281-286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02293121

DOI

http://dx.doi.org/10.1007/bf02293121

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042748937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jackson State University", 
          "id": "https://www.grid.ac/institutes/grid.257990.0", 
          "name": [
            "J. Heyrovsk\u00fd Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic", 
            "Department of Chemistry, Jackson State University, 1400 Lynch Street, 39217, Jackson, Mississippi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0161poner", 
        "givenName": "Ji\u0159i", 
        "id": "sg:person.014510730117.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510730117.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jackson State University", 
          "id": "https://www.grid.ac/institutes/grid.257990.0", 
          "name": [
            "Department of Chemistry, Jackson State University, 1400 Lynch Street, 39217, Jackson, Mississippi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leszczy\u0144ski", 
        "givenName": "Jerzy", 
        "id": "sg:person.01043605510.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043605510.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0009-2614(91)90343-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004853457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/v91-251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005109955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-1280(94)80005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006289030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470166239.ch1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007114703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-1280(92)80005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010029340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0584-8539(91)80112-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018142489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/p29900000329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018382070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qua.560400707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029446412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-1280(09)80040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033331085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qua.560440708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035281851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-1280(93)90065-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037867392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-1280(93)90065-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037867392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/p29890001507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040172675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(90)85286-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043479972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qua.560470104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044102225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0584-8539(91)80182-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049218878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(90)85357-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052075215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00044a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055539568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100062a015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055651388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100063a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055651443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100116a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055653614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100161a032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055655823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100183a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055657484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100357a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055666733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00013a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055698981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00160a032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055710253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00162a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055710413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00216a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055714918"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-08", 
    "datePublishedReg": "1995-08-01", 
    "description": "Four 9H and four 7H tautomers of DNA base xanthine were studied by the ab initio LCAO-MO method at the MP2/6-311G**//HF/6-31G** and MP2/6-31G**//HF/6-31G** approximations. All calculated structures are minima at the HF/6-31G** potential energy surface with the dioxo 7H tautomer (A1) being the global minimum. The second most stable tautomer, dioxo-9H (B1) is by 9 kcal/mol less stable. For the A1 \u2192 B1 transition the calculated MP2 energy gap corresponds to the equilibrium constant of 2 \u00d7 10\u22127. Therefore, only the major tautomeric form A1 is predicted to be detectable in the gas phase. The 7H and 9H groups of tautomers are discussed separately. Within both groups, the dioxo form (A1-7H, B1-9H) is the most stable one and is succeeded by the 2-dihydroxy (A2, B2) form. However, while the energy difference between A1 and A2 is 10 kcal/mol, the energy difference between B1 a B2 is only 2 kcal/mol. The effect of polar environment was estimated by the SCRF method, using a spherical cavity, at the HF/6-31G** level. These calculations did not change the gas phase stability order of the tautomers. However, the energy difference between A1 and B1 decreased from 9 kcal/mol at the HF/6-31G** level to 4 kcal/mol at the SCRF HF/6-31G** level.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02293121", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046791", 
        "issn": [
          "1040-0400", 
          "1572-9001"
        ], 
        "name": "Structural Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4-5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Tautomerism of xanthine: The second-order M\u00d8ller-Plesset study", 
    "pagination": "281-286", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cba1a34165c251b1adaabd2a9c44ef0df834fe2d79b85f20da21788f99eb90bd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02293121"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042748937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02293121", 
      "https://app.dimensions.ai/details/publication/pub.1042748937"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72843_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02293121"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02293121'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02293121'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02293121'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02293121'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02293121 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N3d6ff86d19714200b5d601ab4618848a
4 schema:citation https://doi.org/10.1002/9780470166239.ch1
5 https://doi.org/10.1002/qua.560400707
6 https://doi.org/10.1002/qua.560440708
7 https://doi.org/10.1002/qua.560470104
8 https://doi.org/10.1016/0009-2614(90)85286-l
9 https://doi.org/10.1016/0009-2614(90)85357-i
10 https://doi.org/10.1016/0009-2614(91)90343-8
11 https://doi.org/10.1016/0166-1280(92)80005-7
12 https://doi.org/10.1016/0166-1280(93)90065-j
13 https://doi.org/10.1016/0166-1280(94)80005-7
14 https://doi.org/10.1016/0584-8539(91)80112-v
15 https://doi.org/10.1016/0584-8539(91)80182-i
16 https://doi.org/10.1016/s0166-1280(09)80040-7
17 https://doi.org/10.1021/ic00044a014
18 https://doi.org/10.1021/j100062a015
19 https://doi.org/10.1021/j100063a019
20 https://doi.org/10.1021/j100116a014
21 https://doi.org/10.1021/j100161a032
22 https://doi.org/10.1021/j100183a029
23 https://doi.org/10.1021/j100357a013
24 https://doi.org/10.1021/ja00013a010
25 https://doi.org/10.1021/ja00160a032
26 https://doi.org/10.1021/ja00162a016
27 https://doi.org/10.1021/ja00216a001
28 https://doi.org/10.1039/p29890001507
29 https://doi.org/10.1039/p29900000329
30 https://doi.org/10.1139/v91-251
31 schema:datePublished 1995-08
32 schema:datePublishedReg 1995-08-01
33 schema:description Four 9H and four 7H tautomers of DNA base xanthine were studied by the ab initio LCAO-MO method at the MP2/6-311G**//HF/6-31G** and MP2/6-31G**//HF/6-31G** approximations. All calculated structures are minima at the HF/6-31G** potential energy surface with the dioxo 7H tautomer (A1) being the global minimum. The second most stable tautomer, dioxo-9H (B1) is by 9 kcal/mol less stable. For the A1 → B1 transition the calculated MP2 energy gap corresponds to the equilibrium constant of 2 × 10−7. Therefore, only the major tautomeric form A1 is predicted to be detectable in the gas phase. The 7H and 9H groups of tautomers are discussed separately. Within both groups, the dioxo form (A1-7H, B1-9H) is the most stable one and is succeeded by the 2-dihydroxy (A2, B2) form. However, while the energy difference between A1 and A2 is 10 kcal/mol, the energy difference between B1 a B2 is only 2 kcal/mol. The effect of polar environment was estimated by the SCRF method, using a spherical cavity, at the HF/6-31G** level. These calculations did not change the gas phase stability order of the tautomers. However, the energy difference between A1 and B1 decreased from 9 kcal/mol at the HF/6-31G** level to 4 kcal/mol at the SCRF HF/6-31G** level.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N6a5b7e1441a24615b7cc0f72d7b8d296
38 Nccae8194a22c4f58931c08c39e3fc58e
39 sg:journal.1046791
40 schema:name Tautomerism of xanthine: The second-order MØller-Plesset study
41 schema:pagination 281-286
42 schema:productId Nb7f3a5ffab44487bb2400b111284103e
43 Nde85705cc0b047378b63cd4e99bdb570
44 Ne464a31f08e14492baef315b37d0502a
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042748937
46 https://doi.org/10.1007/bf02293121
47 schema:sdDatePublished 2019-04-11T12:53
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb6347314bc4640fe98bab3c67e218a5d
50 schema:url http://link.springer.com/10.1007%2FBF02293121
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N3d6ff86d19714200b5d601ab4618848a rdf:first sg:person.014510730117.96
55 rdf:rest N4e25a5339b534d419f981e6c5f074547
56 N4e25a5339b534d419f981e6c5f074547 rdf:first sg:person.01043605510.97
57 rdf:rest rdf:nil
58 N6a5b7e1441a24615b7cc0f72d7b8d296 schema:issueNumber 4-5
59 rdf:type schema:PublicationIssue
60 Nb6347314bc4640fe98bab3c67e218a5d schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nb7f3a5ffab44487bb2400b111284103e schema:name dimensions_id
63 schema:value pub.1042748937
64 rdf:type schema:PropertyValue
65 Nccae8194a22c4f58931c08c39e3fc58e schema:volumeNumber 6
66 rdf:type schema:PublicationVolume
67 Nde85705cc0b047378b63cd4e99bdb570 schema:name doi
68 schema:value 10.1007/bf02293121
69 rdf:type schema:PropertyValue
70 Ne464a31f08e14492baef315b37d0502a schema:name readcube_id
71 schema:value cba1a34165c251b1adaabd2a9c44ef0df834fe2d79b85f20da21788f99eb90bd
72 rdf:type schema:PropertyValue
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:journal.1046791 schema:issn 1040-0400
80 1572-9001
81 schema:name Structural Chemistry
82 rdf:type schema:Periodical
83 sg:person.01043605510.97 schema:affiliation https://www.grid.ac/institutes/grid.257990.0
84 schema:familyName Leszczyński
85 schema:givenName Jerzy
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043605510.97
87 rdf:type schema:Person
88 sg:person.014510730117.96 schema:affiliation https://www.grid.ac/institutes/grid.257990.0
89 schema:familyName šponer
90 schema:givenName Jiři
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510730117.96
92 rdf:type schema:Person
93 https://doi.org/10.1002/9780470166239.ch1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007114703
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/qua.560400707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029446412
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/qua.560440708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035281851
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/qua.560470104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044102225
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0009-2614(90)85286-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1043479972
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0009-2614(90)85357-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1052075215
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0009-2614(91)90343-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004853457
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0166-1280(92)80005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010029340
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0166-1280(93)90065-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1037867392
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0166-1280(94)80005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006289030
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0584-8539(91)80112-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1018142489
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0584-8539(91)80182-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1049218878
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0166-1280(09)80040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033331085
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/ic00044a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055539568
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/j100062a015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055651388
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/j100063a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055651443
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/j100116a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055653614
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/j100161a032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055655823
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/j100183a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055657484
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/j100357a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055666733
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/ja00013a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055698981
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/ja00160a032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055710253
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/ja00162a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055710413
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/ja00216a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055714918
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1039/p29890001507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040172675
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1039/p29900000329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018382070
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1139/v91-251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005109955
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.257990.0 schema:alternateName Jackson State University
148 schema:name Department of Chemistry, Jackson State University, 1400 Lynch Street, 39217, Jackson, Mississippi
149 J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...