A reliability coefficient for maximum likelihood factor analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-03

AUTHORS

Ledyard R Tucker, Charles Lewis

ABSTRACT

Maximum likelihood factor analysis provides an effective method for estimation of factor matrices and a useful test statistic in the likelihood ratio for rejection of overly simple factor models. A reliability coefficient is proposed to indicate quality of representation of interrelations among attributes in a battery by a maximum likelihood factor analysis. Usually, for a large sample of individuals or objects, the likelihood ratio statistic could indicate that an otherwise acceptable factor model does not exactly represent the interrelations among the attributes for a population. The reliability coefficient could indicate a very close representation in this case and be a better indication as to whether to accept or reject the factor solution. More... »

PAGES

1-10

Journal

TITLE

Psychometrika

ISSUE

1

VOLUME

38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02291170

DOI

http://dx.doi.org/10.1007/bf02291170

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033111374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "University of Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tucker", 
        "givenName": "Ledyard R", 
        "id": "sg:person.010525451403.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010525451403.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lewis", 
        "givenName": "Charles", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02289008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006713320", 
          "https://doi.org/10.1007/bf02289008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006713320", 
          "https://doi.org/10.1007/bf02289008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011678687", 
          "https://doi.org/10.1007/bf02289085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011678687", 
          "https://doi.org/10.1007/bf02289085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013021195", 
          "https://doi.org/10.1007/bf02289658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013021195", 
          "https://doi.org/10.1007/bf02289658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015163641", 
          "https://doi.org/10.1007/bf02288983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015163641", 
          "https://doi.org/10.1007/bf02288983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023684292", 
          "https://doi.org/10.1007/bf02289009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023684292", 
          "https://doi.org/10.1007/bf02289009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026559518", 
          "https://doi.org/10.1007/bf02290601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026559518", 
          "https://doi.org/10.1007/bf02290601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032669637", 
          "https://doi.org/10.1007/bf02289116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032669637", 
          "https://doi.org/10.1007/bf02289116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036496375", 
          "https://doi.org/10.1007/bf02289365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036496375", 
          "https://doi.org/10.1007/bf02289365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s037016460002006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053205507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1973-03", 
    "datePublishedReg": "1973-03-01", 
    "description": "Maximum likelihood factor analysis provides an effective method for estimation of factor matrices and a useful test statistic in the likelihood ratio for rejection of overly simple factor models. A reliability coefficient is proposed to indicate quality of representation of interrelations among attributes in a battery by a maximum likelihood factor analysis. Usually, for a large sample of individuals or objects, the likelihood ratio statistic could indicate that an otherwise acceptable factor model does not exactly represent the interrelations among the attributes for a population. The reliability coefficient could indicate a very close representation in this case and be a better indication as to whether to accept or reject the factor solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02291170", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "A reliability coefficient for maximum likelihood factor analysis", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9dbc922edbdf0e274efa7b135a70388acc2068886d27e0d201dcf8bdcafec215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02291170"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033111374"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02291170", 
      "https://app.dimensions.ai/details/publication/pub.1033111374"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02291170"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02291170'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02291170'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02291170'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02291170'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02291170 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N399a5c5e45e84aa5bdd942259de447d0
4 schema:citation sg:pub.10.1007/bf02288983
5 sg:pub.10.1007/bf02289008
6 sg:pub.10.1007/bf02289009
7 sg:pub.10.1007/bf02289085
8 sg:pub.10.1007/bf02289116
9 sg:pub.10.1007/bf02289365
10 sg:pub.10.1007/bf02289658
11 sg:pub.10.1007/bf02290601
12 https://doi.org/10.1017/s037016460002006x
13 schema:datePublished 1973-03
14 schema:datePublishedReg 1973-03-01
15 schema:description Maximum likelihood factor analysis provides an effective method for estimation of factor matrices and a useful test statistic in the likelihood ratio for rejection of overly simple factor models. A reliability coefficient is proposed to indicate quality of representation of interrelations among attributes in a battery by a maximum likelihood factor analysis. Usually, for a large sample of individuals or objects, the likelihood ratio statistic could indicate that an otherwise acceptable factor model does not exactly represent the interrelations among the attributes for a population. The reliability coefficient could indicate a very close representation in this case and be a better indication as to whether to accept or reject the factor solution.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N3bc341c0740443c098f1bf9fa9fc578e
20 N93dc2eebc0ed40ea9b589b16b1dc2542
21 sg:journal.1017907
22 schema:name A reliability coefficient for maximum likelihood factor analysis
23 schema:pagination 1-10
24 schema:productId N16d98fcb2a494bf7ac03e0c658fbc0a7
25 N886202ee4f104b76b21dc36d96b7251b
26 Nd964b80a48ec437d955b73afdcc4653b
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033111374
28 https://doi.org/10.1007/bf02291170
29 schema:sdDatePublished 2019-04-11T12:40
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N7d8a520c6cfc489784c402e133cba845
32 schema:url http://link.springer.com/10.1007/BF02291170
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N16d98fcb2a494bf7ac03e0c658fbc0a7 schema:name doi
37 schema:value 10.1007/bf02291170
38 rdf:type schema:PropertyValue
39 N2dda7246b95140a6a6568647966324ef schema:affiliation Nb2ca57b7b44d48168c6112a704525cb0
40 schema:familyName Lewis
41 schema:givenName Charles
42 rdf:type schema:Person
43 N399a5c5e45e84aa5bdd942259de447d0 rdf:first sg:person.010525451403.21
44 rdf:rest N3de43411b148482a8d7f3e78e5a73cf6
45 N3bc341c0740443c098f1bf9fa9fc578e schema:volumeNumber 38
46 rdf:type schema:PublicationVolume
47 N3de43411b148482a8d7f3e78e5a73cf6 rdf:first N2dda7246b95140a6a6568647966324ef
48 rdf:rest rdf:nil
49 N7d8a520c6cfc489784c402e133cba845 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N886202ee4f104b76b21dc36d96b7251b schema:name dimensions_id
52 schema:value pub.1033111374
53 rdf:type schema:PropertyValue
54 N93dc2eebc0ed40ea9b589b16b1dc2542 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 Nb2ca57b7b44d48168c6112a704525cb0 schema:name University of Illinois, USA
57 rdf:type schema:Organization
58 Nd964b80a48ec437d955b73afdcc4653b schema:name readcube_id
59 schema:value 9dbc922edbdf0e274efa7b135a70388acc2068886d27e0d201dcf8bdcafec215
60 rdf:type schema:PropertyValue
61 Ne7a6d3d953764433b4e0b685d4aac311 schema:name University of Illinois, USA
62 rdf:type schema:Organization
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
67 schema:name Statistics
68 rdf:type schema:DefinedTerm
69 sg:journal.1017907 schema:issn 0033-3123
70 1860-0980
71 schema:name Psychometrika
72 rdf:type schema:Periodical
73 sg:person.010525451403.21 schema:affiliation Ne7a6d3d953764433b4e0b685d4aac311
74 schema:familyName Tucker
75 schema:givenName Ledyard R
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010525451403.21
77 rdf:type schema:Person
78 sg:pub.10.1007/bf02288983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015163641
79 https://doi.org/10.1007/bf02288983
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02289008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006713320
82 https://doi.org/10.1007/bf02289008
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02289009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023684292
85 https://doi.org/10.1007/bf02289009
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf02289085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011678687
88 https://doi.org/10.1007/bf02289085
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02289116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032669637
91 https://doi.org/10.1007/bf02289116
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02289365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036496375
94 https://doi.org/10.1007/bf02289365
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02289658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013021195
97 https://doi.org/10.1007/bf02289658
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02290601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026559518
100 https://doi.org/10.1007/bf02290601
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/s037016460002006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053205507
103 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...