Notes on factorial invariance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1964-06

AUTHORS

William Meredith

ABSTRACT

Lawley's selection theorem is applied to subpopulations derived from a parent in which the classical factor model holds for a specified set of variables. The results show that there exists an invariant factor pattern matrix that describes the regression of observed on factor variables in every subpopulation derivable by selection from the parent, given that selection does not occur directly on the observable variables and does not reduce the rank of the system. However, such a factor pattern matrix is not unique, which in turn implies that if a simple structure factor pattern matrix can be satisfactorily determined in one such subpopulation the same simple structure can be found in any subpopulation derivable by selection. The implications of these results for “parallel proportional profiles” and “factor matching” techniques are discussed. More... »

PAGES

177-185

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02289699

DOI

http://dx.doi.org/10.1007/bf02289699

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052245824


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "University of California, Berkeley"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meredith", 
        "givenName": "William", 
        "id": "sg:person.07674355017.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674355017.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0013091500008063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000460777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004900711", 
          "https://doi.org/10.1007/bf02288991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004900711", 
          "https://doi.org/10.1007/bf02288991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254049", 
          "https://doi.org/10.1007/bf02288739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254049", 
          "https://doi.org/10.1007/bf02288739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1954.tb00141.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009783322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8295.1939.tb00919.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010730318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039600259", 
          "https://doi.org/10.1007/bf02289200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039600259", 
          "https://doi.org/10.1007/bf02289200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1955.tb00323.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039937199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040282523", 
          "https://doi.org/10.1007/bf02289710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040282523", 
          "https://doi.org/10.1007/bf02289710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0080454100006385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045303835"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1964-06", 
    "datePublishedReg": "1964-06-01", 
    "description": "Lawley's selection theorem is applied to subpopulations derived from a parent in which the classical factor model holds for a specified set of variables. The results show that there exists an invariant factor pattern matrix that describes the regression of observed on factor variables in every subpopulation derivable by selection from the parent, given that selection does not occur directly on the observable variables and does not reduce the rank of the system. However, such a factor pattern matrix is not unique, which in turn implies that if a simple structure factor pattern matrix can be satisfactorily determined in one such subpopulation the same simple structure can be found in any subpopulation derivable by selection. The implications of these results for \u201cparallel proportional profiles\u201d and \u201cfactor matching\u201d techniques are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02289699", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Notes on factorial invariance", 
    "pagination": "177-185", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f8dd3047ef9514e5b5fbaac9d3d5c041326b685f61d0dc5b6b5d87dad4ccea87"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02289699"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052245824"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02289699", 
      "https://app.dimensions.ai/details/publication/pub.1052245824"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02289699"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02289699 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N34a1887ae24a46a1be1d428dde06f8ad
4 schema:citation sg:pub.10.1007/bf02288739
5 sg:pub.10.1007/bf02288991
6 sg:pub.10.1007/bf02289200
7 sg:pub.10.1007/bf02289710
8 https://doi.org/10.1017/s0013091500008063
9 https://doi.org/10.1017/s0080454100006385
10 https://doi.org/10.1111/j.2044-8295.1939.tb00919.x
11 https://doi.org/10.1111/j.2044-8317.1954.tb00141.x
12 https://doi.org/10.1111/j.2044-8317.1955.tb00323.x
13 schema:datePublished 1964-06
14 schema:datePublishedReg 1964-06-01
15 schema:description Lawley's selection theorem is applied to subpopulations derived from a parent in which the classical factor model holds for a specified set of variables. The results show that there exists an invariant factor pattern matrix that describes the regression of observed on factor variables in every subpopulation derivable by selection from the parent, given that selection does not occur directly on the observable variables and does not reduce the rank of the system. However, such a factor pattern matrix is not unique, which in turn implies that if a simple structure factor pattern matrix can be satisfactorily determined in one such subpopulation the same simple structure can be found in any subpopulation derivable by selection. The implications of these results for “parallel proportional profiles” and “factor matching” techniques are discussed.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1741bb8589ad4efc81637baf62d65c36
20 N91aa5b4d38a946f68cac45bf0432df5d
21 sg:journal.1017907
22 schema:name Notes on factorial invariance
23 schema:pagination 177-185
24 schema:productId N0addff5630e34dbe89a40098f8f455f6
25 N2c5803660ab249d0b7849f3ecf77261f
26 N94678216a1124071a72850f4a700bdf6
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052245824
28 https://doi.org/10.1007/bf02289699
29 schema:sdDatePublished 2019-04-11T01:55
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N81e761981e9e436bb1d44087aa10d3dd
32 schema:url http://link.springer.com/10.1007/BF02289699
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0addff5630e34dbe89a40098f8f455f6 schema:name dimensions_id
37 schema:value pub.1052245824
38 rdf:type schema:PropertyValue
39 N1741bb8589ad4efc81637baf62d65c36 schema:volumeNumber 29
40 rdf:type schema:PublicationVolume
41 N2c5803660ab249d0b7849f3ecf77261f schema:name readcube_id
42 schema:value f8dd3047ef9514e5b5fbaac9d3d5c041326b685f61d0dc5b6b5d87dad4ccea87
43 rdf:type schema:PropertyValue
44 N34a1887ae24a46a1be1d428dde06f8ad rdf:first sg:person.07674355017.17
45 rdf:rest rdf:nil
46 N81e761981e9e436bb1d44087aa10d3dd schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N91aa5b4d38a946f68cac45bf0432df5d schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 N94678216a1124071a72850f4a700bdf6 schema:name doi
51 schema:value 10.1007/bf02289699
52 rdf:type schema:PropertyValue
53 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
54 schema:name Psychology and Cognitive Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
57 schema:name Psychology
58 rdf:type schema:DefinedTerm
59 sg:journal.1017907 schema:issn 0033-3123
60 1860-0980
61 schema:name Psychometrika
62 rdf:type schema:Periodical
63 sg:person.07674355017.17 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
64 schema:familyName Meredith
65 schema:givenName William
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674355017.17
67 rdf:type schema:Person
68 sg:pub.10.1007/bf02288739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254049
69 https://doi.org/10.1007/bf02288739
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02288991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004900711
72 https://doi.org/10.1007/bf02288991
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf02289200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039600259
75 https://doi.org/10.1007/bf02289200
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02289710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040282523
78 https://doi.org/10.1007/bf02289710
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1017/s0013091500008063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000460777
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1017/s0080454100006385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045303835
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1111/j.2044-8295.1939.tb00919.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010730318
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1111/j.2044-8317.1954.tb00141.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009783322
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/j.2044-8317.1955.tb00323.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039937199
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
91 schema:name University of California, Berkeley
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...