Notes on factorial invariance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1964-06

AUTHORS

William Meredith

ABSTRACT

Lawley's selection theorem is applied to subpopulations derived from a parent in which the classical factor model holds for a specified set of variables. The results show that there exists an invariant factor pattern matrix that describes the regression of observed on factor variables in every subpopulation derivable by selection from the parent, given that selection does not occur directly on the observable variables and does not reduce the rank of the system. However, such a factor pattern matrix is not unique, which in turn implies that if a simple structure factor pattern matrix can be satisfactorily determined in one such subpopulation the same simple structure can be found in any subpopulation derivable by selection. The implications of these results for “parallel proportional profiles” and “factor matching” techniques are discussed. More... »

PAGES

177-185

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02289699

DOI

http://dx.doi.org/10.1007/bf02289699

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052245824


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "University of California, Berkeley"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meredith", 
        "givenName": "William", 
        "id": "sg:person.07674355017.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674355017.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0013091500008063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000460777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004900711", 
          "https://doi.org/10.1007/bf02288991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004900711", 
          "https://doi.org/10.1007/bf02288991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254049", 
          "https://doi.org/10.1007/bf02288739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254049", 
          "https://doi.org/10.1007/bf02288739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1954.tb00141.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009783322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8295.1939.tb00919.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010730318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039600259", 
          "https://doi.org/10.1007/bf02289200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039600259", 
          "https://doi.org/10.1007/bf02289200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1955.tb00323.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039937199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040282523", 
          "https://doi.org/10.1007/bf02289710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040282523", 
          "https://doi.org/10.1007/bf02289710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0080454100006385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045303835"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1964-06", 
    "datePublishedReg": "1964-06-01", 
    "description": "Lawley's selection theorem is applied to subpopulations derived from a parent in which the classical factor model holds for a specified set of variables. The results show that there exists an invariant factor pattern matrix that describes the regression of observed on factor variables in every subpopulation derivable by selection from the parent, given that selection does not occur directly on the observable variables and does not reduce the rank of the system. However, such a factor pattern matrix is not unique, which in turn implies that if a simple structure factor pattern matrix can be satisfactorily determined in one such subpopulation the same simple structure can be found in any subpopulation derivable by selection. The implications of these results for \u201cparallel proportional profiles\u201d and \u201cfactor matching\u201d techniques are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02289699", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Notes on factorial invariance", 
    "pagination": "177-185", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f8dd3047ef9514e5b5fbaac9d3d5c041326b685f61d0dc5b6b5d87dad4ccea87"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02289699"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052245824"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02289699", 
      "https://app.dimensions.ai/details/publication/pub.1052245824"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02289699"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02289699'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02289699 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N21623f8bcd81497da4ee5cb6e7762c3f
4 schema:citation sg:pub.10.1007/bf02288739
5 sg:pub.10.1007/bf02288991
6 sg:pub.10.1007/bf02289200
7 sg:pub.10.1007/bf02289710
8 https://doi.org/10.1017/s0013091500008063
9 https://doi.org/10.1017/s0080454100006385
10 https://doi.org/10.1111/j.2044-8295.1939.tb00919.x
11 https://doi.org/10.1111/j.2044-8317.1954.tb00141.x
12 https://doi.org/10.1111/j.2044-8317.1955.tb00323.x
13 schema:datePublished 1964-06
14 schema:datePublishedReg 1964-06-01
15 schema:description Lawley's selection theorem is applied to subpopulations derived from a parent in which the classical factor model holds for a specified set of variables. The results show that there exists an invariant factor pattern matrix that describes the regression of observed on factor variables in every subpopulation derivable by selection from the parent, given that selection does not occur directly on the observable variables and does not reduce the rank of the system. However, such a factor pattern matrix is not unique, which in turn implies that if a simple structure factor pattern matrix can be satisfactorily determined in one such subpopulation the same simple structure can be found in any subpopulation derivable by selection. The implications of these results for “parallel proportional profiles” and “factor matching” techniques are discussed.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1e8c3b86400a45d6946450aeeb14ad02
20 Na8d4aaeb815d4232b33e2bc90957b206
21 sg:journal.1017907
22 schema:name Notes on factorial invariance
23 schema:pagination 177-185
24 schema:productId N4cae6f89377142518cac5054eac1840d
25 N536e5f33c8ad4064ac7c7d8ee50ad0c5
26 N81a1c95287ad4f0ba8a16e2a31088daa
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052245824
28 https://doi.org/10.1007/bf02289699
29 schema:sdDatePublished 2019-04-11T01:55
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nbef68f657f3e4af9bef5009175b305a2
32 schema:url http://link.springer.com/10.1007/BF02289699
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1e8c3b86400a45d6946450aeeb14ad02 schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 N21623f8bcd81497da4ee5cb6e7762c3f rdf:first sg:person.07674355017.17
39 rdf:rest rdf:nil
40 N4cae6f89377142518cac5054eac1840d schema:name doi
41 schema:value 10.1007/bf02289699
42 rdf:type schema:PropertyValue
43 N536e5f33c8ad4064ac7c7d8ee50ad0c5 schema:name readcube_id
44 schema:value f8dd3047ef9514e5b5fbaac9d3d5c041326b685f61d0dc5b6b5d87dad4ccea87
45 rdf:type schema:PropertyValue
46 N81a1c95287ad4f0ba8a16e2a31088daa schema:name dimensions_id
47 schema:value pub.1052245824
48 rdf:type schema:PropertyValue
49 Na8d4aaeb815d4232b33e2bc90957b206 schema:volumeNumber 29
50 rdf:type schema:PublicationVolume
51 Nbef68f657f3e4af9bef5009175b305a2 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
54 schema:name Psychology and Cognitive Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
57 schema:name Psychology
58 rdf:type schema:DefinedTerm
59 sg:journal.1017907 schema:issn 0033-3123
60 1860-0980
61 schema:name Psychometrika
62 rdf:type schema:Periodical
63 sg:person.07674355017.17 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
64 schema:familyName Meredith
65 schema:givenName William
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674355017.17
67 rdf:type schema:Person
68 sg:pub.10.1007/bf02288739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254049
69 https://doi.org/10.1007/bf02288739
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02288991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004900711
72 https://doi.org/10.1007/bf02288991
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf02289200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039600259
75 https://doi.org/10.1007/bf02289200
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02289710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040282523
78 https://doi.org/10.1007/bf02289710
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1017/s0013091500008063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000460777
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1017/s0080454100006385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045303835
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1111/j.2044-8295.1939.tb00919.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010730318
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1111/j.2044-8317.1954.tb00141.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009783322
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/j.2044-8317.1955.tb00323.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039937199
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
91 schema:name University of California, Berkeley
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...