The analysis of proximities: Multidimensional scaling with an unknown distance function. I. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1962-06

AUTHORS

Roger N. Shepard

ABSTRACT

A computer program is described that is designed to reconstruct the metric configuration of a set of points in Euclidean space on the basis of essentially nonmetric information about that configuration. A minimum set of Cartesian coordinates for the points is determined when the only available information specifies for each pair of those points—not the distance between them—but some unknown, fixed monotonic function of that distance. The program is proposed as a tool for reductively analyzing several types of psychological data, particularly measures of interstimulus similarity or confusability, by making explicit the multidimensional structure underlying such data. More... »

PAGES

125-140

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02289630

DOI

http://dx.doi.org/10.1007/bf02289630

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029294563


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nokia (United States)", 
          "id": "https://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Telephone Laboratories, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shepard", 
        "givenName": "Roger N.", 
        "id": "sg:person.013774742211.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774742211.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1037/h0042925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0043083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007619700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00223980.1954.9712953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014723758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0042354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015735276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022103039", 
          "https://doi.org/10.1007/bf02288932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022103039", 
          "https://doi.org/10.1007/bf02288932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984357", 
          "https://doi.org/10.1007/bf02288967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984357", 
          "https://doi.org/10.1007/bf02288967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0042280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045004865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0057661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045498049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0041867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046597336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1418869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069483464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2088276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069750272"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1962-06", 
    "datePublishedReg": "1962-06-01", 
    "description": "A computer program is described that is designed to reconstruct the metric configuration of a set of points in Euclidean space on the basis of essentially nonmetric information about that configuration. A minimum set of Cartesian coordinates for the points is determined when the only available information specifies for each pair of those points\u2014not the distance between them\u2014but some unknown, fixed monotonic function of that distance. The program is proposed as a tool for reductively analyzing several types of psychological data, particularly measures of interstimulus similarity or confusability, by making explicit the multidimensional structure underlying such data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02289630", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "The analysis of proximities: Multidimensional scaling with an unknown distance function. I.", 
    "pagination": "125-140", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8b8e1cac355236d89b8117c3302522a4518e6200b3139adc56f52faeb0aa1d1f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02289630"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029294563"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02289630", 
      "https://app.dimensions.ai/details/publication/pub.1029294563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02289630"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02289630'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02289630'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02289630'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02289630'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02289630 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nd7e50abc848047bd8176633e5ed91fd0
4 schema:citation sg:pub.10.1007/bf02288932
5 sg:pub.10.1007/bf02288967
6 https://doi.org/10.1037/h0041867
7 https://doi.org/10.1037/h0042280
8 https://doi.org/10.1037/h0042354
9 https://doi.org/10.1037/h0042925
10 https://doi.org/10.1037/h0043083
11 https://doi.org/10.1037/h0057661
12 https://doi.org/10.1080/00223980.1954.9712953
13 https://doi.org/10.1214/aoms/1177728669
14 https://doi.org/10.1214/aoms/1177729805
15 https://doi.org/10.2307/1418869
16 https://doi.org/10.2307/2088276
17 schema:datePublished 1962-06
18 schema:datePublishedReg 1962-06-01
19 schema:description A computer program is described that is designed to reconstruct the metric configuration of a set of points in Euclidean space on the basis of essentially nonmetric information about that configuration. A minimum set of Cartesian coordinates for the points is determined when the only available information specifies for each pair of those points—not the distance between them—but some unknown, fixed monotonic function of that distance. The program is proposed as a tool for reductively analyzing several types of psychological data, particularly measures of interstimulus similarity or confusability, by making explicit the multidimensional structure underlying such data.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N5649bfac51a741378e7c9f6242556e48
24 N913be39dac204c47bc46a52b90b7b6a7
25 sg:journal.1017907
26 schema:name The analysis of proximities: Multidimensional scaling with an unknown distance function. I.
27 schema:pagination 125-140
28 schema:productId N0472be437d9d45529e69f7f3ea3eefe4
29 N99213d95a4c44ddeb69aba9e6d5c2bfc
30 Ncb920b72fbb54288837e331de0f61ca5
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029294563
32 https://doi.org/10.1007/bf02289630
33 schema:sdDatePublished 2019-04-11T12:38
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8ab5ee4d5aad4c8fa7901d1717c004b4
36 schema:url http://link.springer.com/10.1007%2FBF02289630
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0472be437d9d45529e69f7f3ea3eefe4 schema:name doi
41 schema:value 10.1007/bf02289630
42 rdf:type schema:PropertyValue
43 N5649bfac51a741378e7c9f6242556e48 schema:volumeNumber 27
44 rdf:type schema:PublicationVolume
45 N8ab5ee4d5aad4c8fa7901d1717c004b4 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N913be39dac204c47bc46a52b90b7b6a7 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N99213d95a4c44ddeb69aba9e6d5c2bfc schema:name readcube_id
50 schema:value 8b8e1cac355236d89b8117c3302522a4518e6200b3139adc56f52faeb0aa1d1f
51 rdf:type schema:PropertyValue
52 Ncb920b72fbb54288837e331de0f61ca5 schema:name dimensions_id
53 schema:value pub.1029294563
54 rdf:type schema:PropertyValue
55 Nd7e50abc848047bd8176633e5ed91fd0 rdf:first sg:person.013774742211.86
56 rdf:rest rdf:nil
57 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
58 schema:name Psychology and Cognitive Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
61 schema:name Psychology
62 rdf:type schema:DefinedTerm
63 sg:journal.1017907 schema:issn 0033-3123
64 1860-0980
65 schema:name Psychometrika
66 rdf:type schema:Periodical
67 sg:person.013774742211.86 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
68 schema:familyName Shepard
69 schema:givenName Roger N.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774742211.86
71 rdf:type schema:Person
72 sg:pub.10.1007/bf02288932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022103039
73 https://doi.org/10.1007/bf02288932
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf02288967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032984357
76 https://doi.org/10.1007/bf02288967
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1037/h0041867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046597336
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1037/h0042280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045004865
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1037/h0042354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015735276
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1037/h0042925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003829866
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1037/h0043083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007619700
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1037/h0057661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045498049
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/00223980.1954.9712953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014723758
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1214/aoms/1177728669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401487
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1214/aoms/1177729805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401841
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2307/1418869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069483464
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2307/2088276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069750272
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.469490.6 schema:alternateName Nokia (United States)
101 schema:name Bell Telephone Laboratories, USA
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...