Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1964-03

AUTHORS

J. B. Kruskal

ABSTRACT

Multidimensional scaling is the problem of representingn objects geometrically byn points, so that the interpoint distances correspond in some sense to experimental dissimilarities between objects. In just what sense distances and dissimilarities should correspond has been left rather vague in most approaches, thus leaving these approaches logically incomplete. Our fundamental hypothesis is that dissimilarities and distances are monotonically related. We define a quantitative, intuitively satisfying measure of goodness of fit to this hypothesis. Our technique of multidimensional scaling is to compute that configuration of points which optimizes the goodness of fit. A practical computer program for doing the calculations is described in a companion paper. More... »

PAGES

1-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02289565

DOI

http://dx.doi.org/10.1007/bf02289565

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044215102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Bell Telephone Laboratories, Murray Hill, N. J."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kruskal", 
        "givenName": "J. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1037/h0044796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002124161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800050204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013266371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00223980.1954.9712953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014723758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018964677", 
          "https://doi.org/10.1007/bf02289694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020554094", 
          "https://doi.org/10.1007/bf02289726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020554094", 
          "https://doi.org/10.1007/bf02289726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0049149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024336451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029294563", 
          "https://doi.org/10.1007/bf02289630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029294563", 
          "https://doi.org/10.1007/bf02289630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984357", 
          "https://doi.org/10.1007/bf02288967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984357", 
          "https://doi.org/10.1007/bf02288967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800060102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035357214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0041867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046597336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/46.1-2.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2466/pr0.1958.4.h.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070803198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2466/pr0.1958.4.h.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070803198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001872086300500104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076171507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001872086300500104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076171507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1964-03", 
    "datePublishedReg": "1964-03-01", 
    "description": "Multidimensional scaling is the problem of representingn objects geometrically byn points, so that the interpoint distances correspond in some sense to experimental dissimilarities between objects. In just what sense distances and dissimilarities should correspond has been left rather vague in most approaches, thus leaving these approaches logically incomplete. Our fundamental hypothesis is that dissimilarities and distances are monotonically related. We define a quantitative, intuitively satisfying measure of goodness of fit to this hypothesis. Our technique of multidimensional scaling is to compute that configuration of points which optimizes the goodness of fit. A practical computer program for doing the calculations is described in a companion paper.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02289565", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d29c522f92840a7dd0009dce2b011eb41542a4310fbae5b3a2718e9c45119441"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02289565"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044215102"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02289565", 
      "https://app.dimensions.ai/details/publication/pub.1044215102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02289565"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02289565'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02289565'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02289565'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02289565'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02289565 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nb51a970f916443b08f585f8dafccd822
4 schema:citation sg:pub.10.1007/bf02288967
5 sg:pub.10.1007/bf02289630
6 sg:pub.10.1007/bf02289694
7 sg:pub.10.1007/bf02289726
8 https://doi.org/10.1002/nav.3800050204
9 https://doi.org/10.1002/nav.3800060102
10 https://doi.org/10.1037/h0041867
11 https://doi.org/10.1037/h0044796
12 https://doi.org/10.1037/h0049149
13 https://doi.org/10.1080/00223980.1954.9712953
14 https://doi.org/10.1093/biomet/46.1-2.36
15 https://doi.org/10.1177/001872086300500104
16 https://doi.org/10.2466/pr0.1958.4.h.511
17 schema:datePublished 1964-03
18 schema:datePublishedReg 1964-03-01
19 schema:description Multidimensional scaling is the problem of representingn objects geometrically byn points, so that the interpoint distances correspond in some sense to experimental dissimilarities between objects. In just what sense distances and dissimilarities should correspond has been left rather vague in most approaches, thus leaving these approaches logically incomplete. Our fundamental hypothesis is that dissimilarities and distances are monotonically related. We define a quantitative, intuitively satisfying measure of goodness of fit to this hypothesis. Our technique of multidimensional scaling is to compute that configuration of points which optimizes the goodness of fit. A practical computer program for doing the calculations is described in a companion paper.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N290e1e247b094f83ba38aaa2327f6998
24 Nd16510af9a7b49fcabae8ff33bb2c6e1
25 sg:journal.1017907
26 schema:name Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
27 schema:pagination 1-27
28 schema:productId Na187d844a2a04db9be7034268a3cbd28
29 Ne0b6db2c7233417ab795aa0b59bb28d5
30 Nf39390d8e770478b892ee60246bbd6d2
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215102
32 https://doi.org/10.1007/bf02289565
33 schema:sdDatePublished 2019-04-11T12:39
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Ndf890b77aba641e585950378630cc2f5
36 schema:url http://link.springer.com/10.1007%2FBF02289565
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N111afadc14f24873afe8b16ebb9fd8cc schema:name Bell Telephone Laboratories, Murray Hill, N. J.
41 rdf:type schema:Organization
42 N290e1e247b094f83ba38aaa2327f6998 schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 N29dd7c026b9a4ea3a399d9bc1c1f1f12 schema:affiliation N111afadc14f24873afe8b16ebb9fd8cc
45 schema:familyName Kruskal
46 schema:givenName J. B.
47 rdf:type schema:Person
48 Na187d844a2a04db9be7034268a3cbd28 schema:name doi
49 schema:value 10.1007/bf02289565
50 rdf:type schema:PropertyValue
51 Nb51a970f916443b08f585f8dafccd822 rdf:first N29dd7c026b9a4ea3a399d9bc1c1f1f12
52 rdf:rest rdf:nil
53 Nd16510af9a7b49fcabae8ff33bb2c6e1 schema:volumeNumber 29
54 rdf:type schema:PublicationVolume
55 Ndf890b77aba641e585950378630cc2f5 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Ne0b6db2c7233417ab795aa0b59bb28d5 schema:name readcube_id
58 schema:value d29c522f92840a7dd0009dce2b011eb41542a4310fbae5b3a2718e9c45119441
59 rdf:type schema:PropertyValue
60 Nf39390d8e770478b892ee60246bbd6d2 schema:name dimensions_id
61 schema:value pub.1044215102
62 rdf:type schema:PropertyValue
63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
64 schema:name Psychology and Cognitive Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
67 schema:name Psychology
68 rdf:type schema:DefinedTerm
69 sg:journal.1017907 schema:issn 0033-3123
70 1860-0980
71 schema:name Psychometrika
72 rdf:type schema:Periodical
73 sg:pub.10.1007/bf02288967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032984357
74 https://doi.org/10.1007/bf02288967
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02289630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029294563
77 https://doi.org/10.1007/bf02289630
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02289694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018964677
80 https://doi.org/10.1007/bf02289694
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02289726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020554094
83 https://doi.org/10.1007/bf02289726
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/nav.3800050204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013266371
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/nav.3800060102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035357214
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1037/h0041867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046597336
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1037/h0044796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002124161
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1037/h0049149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024336451
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/00223980.1954.9712953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014723758
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1093/biomet/46.1-2.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416847
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1177/001872086300500104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076171507
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2466/pr0.1958.4.h.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070803198
102 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...