“Parallel proportional profiles” and other principles for determining the choice of factors by rotation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1944-12

AUTHORS

Raymond B. Cattell

ABSTRACT

The choosing of a set of factors likely to correspond to the real psychological unitary traits in a situation usually reduces to finding a satisfactory rotation in a Thurstone centroid analysis. Seven principles, three of which are new, are described whereby rotation may be determined and/or judged. It is argued that the most fundamental is the principle of “parallel proportional profiles” or “simultaneous simple structure.” A mathematical proof of the uniqueness of determination by this means is attempted and equations are suggested for discovering the unique position. More... »

PAGES

267-283

References to SciGraph publications

Journal

TITLE

Psychometrika

ISSUE

4

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02288739

DOI

http://dx.doi.org/10.1007/bf02288739

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008254049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Duke University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cattell", 
        "givenName": "Raymond B.", 
        "id": "sg:person.010237275065.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237275065.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00224545.1945.9712295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010661268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8295.1933.tb00669.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011391479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0054116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014222633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020768155", 
          "https://doi.org/10.1007/bf02288683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8295.1919.tb00232.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027247651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0057276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027566888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1944-12", 
    "datePublishedReg": "1944-12-01", 
    "description": "The choosing of a set of factors likely to correspond to the real psychological unitary traits in a situation usually reduces to finding a satisfactory rotation in a Thurstone centroid analysis. Seven principles, three of which are new, are described whereby rotation may be determined and/or judged. It is argued that the most fundamental is the principle of \u201cparallel proportional profiles\u201d or \u201csimultaneous simple structure.\u201d A mathematical proof of the uniqueness of determination by this means is attempted and equations are suggested for discovering the unique position.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02288739", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "\u201cParallel proportional profiles\u201d and other principles for determining the choice of factors by rotation", 
    "pagination": "267-283", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "275288240887c55ca5be231a91bb0ae79d1bdb4dc746989b8d32563b7f26fd83"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02288739"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008254049"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02288739", 
      "https://app.dimensions.ai/details/publication/pub.1008254049"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02288739"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02288739'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02288739'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02288739'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02288739'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02288739 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N5237a64536204a79a06c763821d9428d
4 schema:citation sg:pub.10.1007/bf02288683
5 https://doi.org/10.1037/h0054116
6 https://doi.org/10.1037/h0057276
7 https://doi.org/10.1080/00224545.1945.9712295
8 https://doi.org/10.1111/j.2044-8295.1919.tb00232.x
9 https://doi.org/10.1111/j.2044-8295.1933.tb00669.x
10 schema:datePublished 1944-12
11 schema:datePublishedReg 1944-12-01
12 schema:description The choosing of a set of factors likely to correspond to the real psychological unitary traits in a situation usually reduces to finding a satisfactory rotation in a Thurstone centroid analysis. Seven principles, three of which are new, are described whereby rotation may be determined and/or judged. It is argued that the most fundamental is the principle of “parallel proportional profiles” or “simultaneous simple structure.” A mathematical proof of the uniqueness of determination by this means is attempted and equations are suggested for discovering the unique position.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N5acb6b51cbaf47c39e14503203296ea0
17 N7b1719f28f434dc2a65e6feac3aa2cda
18 sg:journal.1017907
19 schema:name “Parallel proportional profiles” and other principles for determining the choice of factors by rotation
20 schema:pagination 267-283
21 schema:productId N85814cf332534004855bbc5f27d7e662
22 Nc2914571950e4b2183101c2151ad7431
23 Nc9d35b2c93a34ceaa3764607482036e5
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254049
25 https://doi.org/10.1007/bf02288739
26 schema:sdDatePublished 2019-04-11T12:37
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N409200e539ee4f1b85748f277f5681c7
29 schema:url http://link.springer.com/10.1007%2FBF02288739
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N409200e539ee4f1b85748f277f5681c7 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N5237a64536204a79a06c763821d9428d rdf:first sg:person.010237275065.48
36 rdf:rest rdf:nil
37 N5acb6b51cbaf47c39e14503203296ea0 schema:issueNumber 4
38 rdf:type schema:PublicationIssue
39 N7b1719f28f434dc2a65e6feac3aa2cda schema:volumeNumber 9
40 rdf:type schema:PublicationVolume
41 N85814cf332534004855bbc5f27d7e662 schema:name dimensions_id
42 schema:value pub.1008254049
43 rdf:type schema:PropertyValue
44 Nc2914571950e4b2183101c2151ad7431 schema:name doi
45 schema:value 10.1007/bf02288739
46 rdf:type schema:PropertyValue
47 Nc9d35b2c93a34ceaa3764607482036e5 schema:name readcube_id
48 schema:value 275288240887c55ca5be231a91bb0ae79d1bdb4dc746989b8d32563b7f26fd83
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
54 schema:name Applied Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1017907 schema:issn 0033-3123
57 1860-0980
58 schema:name Psychometrika
59 rdf:type schema:Periodical
60 sg:person.010237275065.48 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
61 schema:familyName Cattell
62 schema:givenName Raymond B.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237275065.48
64 rdf:type schema:Person
65 sg:pub.10.1007/bf02288683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020768155
66 https://doi.org/10.1007/bf02288683
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1037/h0054116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014222633
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1037/h0057276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027566888
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1080/00224545.1945.9712295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010661268
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1111/j.2044-8295.1919.tb00232.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027247651
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1111/j.2044-8295.1933.tb00669.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011391479
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
79 schema:name Duke University, USA
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...