Hydrodynamics of stationary non-equilibrium states for some stochastic lattice gas models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-08

AUTHORS

Gregory Eyink, Joel L. Lebowitz, Herbert Spohn

ABSTRACT

We consider discrete lattice gas models in a finite interval with stochastic jump dynamics in the interior, which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. The unique stationary measures of these processes support a steady particle current from the reservoir of higher chemical potential into the lower and are non-reversible. We study the structure of the stationary measure in the hydrodynamic limit, as the microscopic lattice size goes to infinity. In particular, we prove as a law of large numbers that the empirical density field converges to a deterministic limit which is the solution of the stationary transport equation and the empirical current converges to the deterministic limit given by Fick's law. More... »

PAGES

253-283

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02278011

DOI

http://dx.doi.org/10.1007/bf02278011

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043562108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Departments of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyink", 
        "givenName": "Gregory", 
        "id": "sg:person.0657261436.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657261436.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Departments of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebowitz", 
        "givenName": "Joel L.", 
        "id": "sg:person.015317013331.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Theoretische Physik, Universit\u00e4t M\u00fcnchen, D-8000, M\u00fcnchen, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spohn", 
        "givenName": "Herbert", 
        "id": "sg:person.0762212765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(88)90052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014638211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(88)90052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014638211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305894", 
          "https://doi.org/10.1007/bf01614132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305894", 
          "https://doi.org/10.1007/bf01614132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-0022-4.50006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016567795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016614190", 
          "https://doi.org/10.1007/bf01218476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016614190", 
          "https://doi.org/10.1007/bf01218476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8514-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029911770", 
          "https://doi.org/10.1007/978-1-4613-8514-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8514-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029911770", 
          "https://doi.org/10.1007/978-1-4613-8514-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01015727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044349796", 
          "https://doi.org/10.1007/bf01015727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050800589", 
          "https://doi.org/10.1007/bf01019779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/16/18/029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059066633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.1954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.1954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176992524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404439"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-08", 
    "datePublishedReg": "1990-08-01", 
    "description": "We consider discrete lattice gas models in a finite interval with stochastic jump dynamics in the interior, which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. The unique stationary measures of these processes support a steady particle current from the reservoir of higher chemical potential into the lower and are non-reversible. We study the structure of the stationary measure in the hydrodynamic limit, as the microscopic lattice size goes to infinity. In particular, we prove as a law of large numbers that the empirical density field converges to a deterministic limit which is the solution of the stationary transport equation and the empirical current converges to the deterministic limit given by Fick's law.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02278011", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "name": "Hydrodynamics of stationary non-equilibrium states for some stochastic lattice gas models", 
    "pagination": "253-283", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf80939c5a0d968a18b18f6faf41eae2ea9c7138e84854ae9a0a8392890dc181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02278011"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043562108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02278011", 
      "https://app.dimensions.ai/details/publication/pub.1043562108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02278011"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02278011'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02278011'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02278011'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02278011'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02278011 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N32fba06dc8584d26ad8b06bce8ed7709
4 schema:citation sg:pub.10.1007/978-1-4613-8514-1
5 sg:pub.10.1007/bf01015727
6 sg:pub.10.1007/bf01019779
7 sg:pub.10.1007/bf01218476
8 sg:pub.10.1007/bf01614132
9 sg:pub.10.1007/bf01941803
10 https://doi.org/10.1016/0370-1573(88)90052-x
11 https://doi.org/10.1016/b978-1-4832-0022-4.50006-5
12 https://doi.org/10.1088/0305-4470/16/18/029
13 https://doi.org/10.1103/physreva.42.1954
14 https://doi.org/10.1214/aop/1176992524
15 schema:datePublished 1990-08
16 schema:datePublishedReg 1990-08-01
17 schema:description We consider discrete lattice gas models in a finite interval with stochastic jump dynamics in the interior, which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. The unique stationary measures of these processes support a steady particle current from the reservoir of higher chemical potential into the lower and are non-reversible. We study the structure of the stationary measure in the hydrodynamic limit, as the microscopic lattice size goes to infinity. In particular, we prove as a law of large numbers that the empirical density field converges to a deterministic limit which is the solution of the stationary transport equation and the empirical current converges to the deterministic limit given by Fick's law.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N9b2766b1436e461fa6eb373645a15ada
22 Ne1caca2e306641c3955303517de96d5d
23 sg:journal.1136216
24 schema:name Hydrodynamics of stationary non-equilibrium states for some stochastic lattice gas models
25 schema:pagination 253-283
26 schema:productId N667863dc457c4d2699d3e18f0f9f9c9a
27 N68e3033ff0af457eb5f750d082072d09
28 N79cb16ada11d48c3915a8dcb81f5263d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043562108
30 https://doi.org/10.1007/bf02278011
31 schema:sdDatePublished 2019-04-11T12:37
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N4728d027ad2041ad98982a7c9ec9ce49
34 schema:url http://link.springer.com/10.1007%2FBF02278011
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N174d0db9d33249be8e1b26ec8f9903d6 rdf:first sg:person.015317013331.48
39 rdf:rest N519bdc776b5a4ffdab264984606a2264
40 N32fba06dc8584d26ad8b06bce8ed7709 rdf:first sg:person.0657261436.69
41 rdf:rest N174d0db9d33249be8e1b26ec8f9903d6
42 N4728d027ad2041ad98982a7c9ec9ce49 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N519bdc776b5a4ffdab264984606a2264 rdf:first sg:person.0762212765.01
45 rdf:rest rdf:nil
46 N667863dc457c4d2699d3e18f0f9f9c9a schema:name readcube_id
47 schema:value cf80939c5a0d968a18b18f6faf41eae2ea9c7138e84854ae9a0a8392890dc181
48 rdf:type schema:PropertyValue
49 N68e3033ff0af457eb5f750d082072d09 schema:name dimensions_id
50 schema:value pub.1043562108
51 rdf:type schema:PropertyValue
52 N79cb16ada11d48c3915a8dcb81f5263d schema:name doi
53 schema:value 10.1007/bf02278011
54 rdf:type schema:PropertyValue
55 N9b2766b1436e461fa6eb373645a15ada schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 Ne1caca2e306641c3955303517de96d5d schema:volumeNumber 132
58 rdf:type schema:PublicationVolume
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
63 schema:name Resources Engineering and Extractive Metallurgy
64 rdf:type schema:DefinedTerm
65 sg:journal.1136216 schema:issn 0010-3616
66 1432-0916
67 schema:name Communications in Mathematical Physics
68 rdf:type schema:Periodical
69 sg:person.015317013331.48 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
70 schema:familyName Lebowitz
71 schema:givenName Joel L.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48
73 rdf:type schema:Person
74 sg:person.0657261436.69 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
75 schema:familyName Eyink
76 schema:givenName Gregory
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657261436.69
78 rdf:type schema:Person
79 sg:person.0762212765.01 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
80 schema:familyName Spohn
81 schema:givenName Herbert
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4613-8514-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029911770
85 https://doi.org/10.1007/978-1-4613-8514-1
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01015727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044349796
88 https://doi.org/10.1007/bf01015727
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01019779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050800589
91 https://doi.org/10.1007/bf01019779
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01218476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016614190
94 https://doi.org/10.1007/bf01218476
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01614132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015305894
97 https://doi.org/10.1007/bf01614132
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01941803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040699
100 https://doi.org/10.1007/bf01941803
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0370-1573(88)90052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014638211
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/b978-1-4832-0022-4.50006-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016567795
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1088/0305-4470/16/18/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059066633
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreva.42.1954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481871
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1214/aop/1176992524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404439
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
113 schema:name Departments of Mathematics and Physics, Rutgers University, 08903, New Brunswick, NJ, USA
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
116 schema:name Theoretische Physik, Universität München, D-8000, München, Federal Republic of Germany
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...