Neutral models for the analysis of broad-scale landscape pattern View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-07

AUTHORS

Robert H. Gardner, Bruce T. Milne, Monica G. Turnei, Robert V. O'Neill

ABSTRACT

The relationship between a landscape process and observed patterns can be rigorously tested only if the expected pattern in the absence of the process is known. We used methods derived from percolation theory to construct neutral landscape models,i.e., models lacking effects due to topography, contagion, disturbance history, and related ecological processes. This paper analyzes the patterns generated by these models, and compares the results with observed landscape patterns. The analysis shows that number, size, and shape of patches changes as a function of p, the fraction of the landscape occupied by the habitat type of interest, and m, the linear dimension of the map. The adaptation of percolation theory to finite scales provides a baseline for statistical comparison with landscape data. When USGS land use data (LUDA) maps are compared to random maps produced by percolation models, significant differences in the number, size distribution, and the area/perimeter (fractal dimension) indices of patches were found. These results make it possible to define the appropriate scales at which disturbance and landscape processes interact to affect landscape patterns. More... »

PAGES

19-28

References to SciGraph publications

  • 1987. Scale Effects in Landscape Studies in LANDSCAPE HETEROGENEITY AND DISTURBANCE
  • 1987-03. Land use changes and net primary production in the Georgia, USA, landscape: 1935–1982 in ENVIRONMENTAL MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02275262

    DOI

    http://dx.doi.org/10.1007/bf02275262

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049132958


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Environmental Sciences Division, Oak Ridge National Laboratory, 37831-6036, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardner", 
            "givenName": "Robert H.", 
            "id": "sg:person.013144137003.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144137003.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of New Mexico", 
              "id": "https://www.grid.ac/institutes/grid.266832.b", 
              "name": [
                "Department of Biology, University of New Mexico, 87131, Albuquerque, NM, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Milne", 
            "givenName": "Bruce T.", 
            "id": "sg:person.01247164574.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247164574.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Georgia", 
              "id": "https://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Institute of Ecology, University of Georgia, 30602, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turnei", 
            "givenName": "Monica G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Environmental Sciences Division, Oak Ridge National Laboratory, 37831-6036, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O'Neill", 
            "givenName": "Robert V.", 
            "id": "sg:person.013616603370.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616603370.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0096-3003(88)90099-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011354612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4742-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017549390", 
              "https://doi.org/10.1007/978-1-4612-4742-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1983.tb01057.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017931501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1942257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020035954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4324/9780203211595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025360260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01867202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041932455", 
              "https://doi.org/10.1007/bf01867202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01867202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041932455", 
              "https://doi.org/10.1007/bf01867202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.50.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.50.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.231.4740.814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062531964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3565520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070373085"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-07", 
        "datePublishedReg": "1987-07-01", 
        "description": "The relationship between a landscape process and observed patterns can be rigorously tested only if the expected pattern in the absence of the process is known. We used methods derived from percolation theory to construct neutral landscape models,i.e., models lacking effects due to topography, contagion, disturbance history, and related ecological processes. This paper analyzes the patterns generated by these models, and compares the results with observed landscape patterns. The analysis shows that number, size, and shape of patches changes as a function of p, the fraction of the landscape occupied by the habitat type of interest, and m, the linear dimension of the map. The adaptation of percolation theory to finite scales provides a baseline for statistical comparison with landscape data. When USGS land use data (LUDA) maps are compared to random maps produced by percolation models, significant differences in the number, size distribution, and the area/perimeter (fractal dimension) indices of patches were found. These results make it possible to define the appropriate scales at which disturbance and landscape processes interact to affect landscape patterns.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02275262", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043738", 
            "issn": [
              "0921-2973", 
              "1572-9761"
            ], 
            "name": "Landscape Ecology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "Neutral models for the analysis of broad-scale landscape pattern", 
        "pagination": "19-28", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ea0fc1129b253922b2f3d718992756c6526eb2e0fd613d913b31af6b47aa2065"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02275262"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049132958"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02275262", 
          "https://app.dimensions.ai/details/publication/pub.1049132958"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70068_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02275262"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02275262'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02275262'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02275262'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02275262'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02275262 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N2929e1d0d269486caa61a4d77da42722
    4 schema:citation sg:pub.10.1007/978-1-4612-4742-5_2
    5 sg:pub.10.1007/bf01867202
    6 https://doi.org/10.1016/0096-3003(88)90099-9
    7 https://doi.org/10.1103/physrevlett.50.77
    8 https://doi.org/10.1111/j.1365-2389.1983.tb01057.x
    9 https://doi.org/10.1126/science.231.4740.814
    10 https://doi.org/10.2307/1942257
    11 https://doi.org/10.2307/3565520
    12 https://doi.org/10.4324/9780203211595
    13 schema:datePublished 1987-07
    14 schema:datePublishedReg 1987-07-01
    15 schema:description The relationship between a landscape process and observed patterns can be rigorously tested only if the expected pattern in the absence of the process is known. We used methods derived from percolation theory to construct neutral landscape models,i.e., models lacking effects due to topography, contagion, disturbance history, and related ecological processes. This paper analyzes the patterns generated by these models, and compares the results with observed landscape patterns. The analysis shows that number, size, and shape of patches changes as a function of p, the fraction of the landscape occupied by the habitat type of interest, and m, the linear dimension of the map. The adaptation of percolation theory to finite scales provides a baseline for statistical comparison with landscape data. When USGS land use data (LUDA) maps are compared to random maps produced by percolation models, significant differences in the number, size distribution, and the area/perimeter (fractal dimension) indices of patches were found. These results make it possible to define the appropriate scales at which disturbance and landscape processes interact to affect landscape patterns.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N273c7034dd4641a884d536330ddd35a7
    20 Na9c9383aa707437294935b32de0aba52
    21 sg:journal.1043738
    22 schema:name Neutral models for the analysis of broad-scale landscape pattern
    23 schema:pagination 19-28
    24 schema:productId N77a195f6c6f14b1cb6717dd4e5bb942e
    25 N87eb37c87f2049d0b5ea26131b5678aa
    26 Nce9fa6db520a4ec29caf42c673e35676
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049132958
    28 https://doi.org/10.1007/bf02275262
    29 schema:sdDatePublished 2019-04-11T12:44
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N922453523eb94051b88b166577502a51
    32 schema:url http://link.springer.com/10.1007%2FBF02275262
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N273c7034dd4641a884d536330ddd35a7 schema:issueNumber 1
    37 rdf:type schema:PublicationIssue
    38 N2929e1d0d269486caa61a4d77da42722 rdf:first sg:person.013144137003.39
    39 rdf:rest Nab93d46798c04273a1bb345b39f592fd
    40 N77a195f6c6f14b1cb6717dd4e5bb942e schema:name readcube_id
    41 schema:value ea0fc1129b253922b2f3d718992756c6526eb2e0fd613d913b31af6b47aa2065
    42 rdf:type schema:PropertyValue
    43 N87eb37c87f2049d0b5ea26131b5678aa schema:name doi
    44 schema:value 10.1007/bf02275262
    45 rdf:type schema:PropertyValue
    46 N922453523eb94051b88b166577502a51 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N93e323c1521b4f9a85291827e1c23997 rdf:first sg:person.013616603370.85
    49 rdf:rest rdf:nil
    50 Na9c9383aa707437294935b32de0aba52 schema:volumeNumber 1
    51 rdf:type schema:PublicationVolume
    52 Nab93d46798c04273a1bb345b39f592fd rdf:first sg:person.01247164574.17
    53 rdf:rest Ncb18c02b2a2040b28d9edf58673711f8
    54 Nbc1f92f621864d69925a537a1ef23e38 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
    55 schema:familyName Turnei
    56 schema:givenName Monica G.
    57 rdf:type schema:Person
    58 Ncb18c02b2a2040b28d9edf58673711f8 rdf:first Nbc1f92f621864d69925a537a1ef23e38
    59 rdf:rest N93e323c1521b4f9a85291827e1c23997
    60 Nce9fa6db520a4ec29caf42c673e35676 schema:name dimensions_id
    61 schema:value pub.1049132958
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Statistics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1043738 schema:issn 0921-2973
    70 1572-9761
    71 schema:name Landscape Ecology
    72 rdf:type schema:Periodical
    73 sg:person.01247164574.17 schema:affiliation https://www.grid.ac/institutes/grid.266832.b
    74 schema:familyName Milne
    75 schema:givenName Bruce T.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247164574.17
    77 rdf:type schema:Person
    78 sg:person.013144137003.39 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    79 schema:familyName Gardner
    80 schema:givenName Robert H.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144137003.39
    82 rdf:type schema:Person
    83 sg:person.013616603370.85 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    84 schema:familyName O'Neill
    85 schema:givenName Robert V.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616603370.85
    87 rdf:type schema:Person
    88 sg:pub.10.1007/978-1-4612-4742-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017549390
    89 https://doi.org/10.1007/978-1-4612-4742-5_2
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01867202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041932455
    92 https://doi.org/10.1007/bf01867202
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/0096-3003(88)90099-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011354612
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physrevlett.50.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788861
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1111/j.1365-2389.1983.tb01057.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017931501
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1126/science.231.4740.814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062531964
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.2307/1942257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020035954
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.2307/3565520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070373085
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.4324/9780203211595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360260
    107 rdf:type schema:CreativeWork
    108 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
    109 schema:name Environmental Sciences Division, Oak Ridge National Laboratory, 37831-6036, Oak Ridge, TN, USA
    110 rdf:type schema:Organization
    111 https://www.grid.ac/institutes/grid.213876.9 schema:alternateName University of Georgia
    112 schema:name Institute of Ecology, University of Georgia, 30602, Athens, GA, USA
    113 rdf:type schema:Organization
    114 https://www.grid.ac/institutes/grid.266832.b schema:alternateName University of New Mexico
    115 schema:name Department of Biology, University of New Mexico, 87131, Albuquerque, NM, USA
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...