An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1984-12

AUTHORS

G. T. Toussaint

ABSTRACT

LetP={p1,p2, ...,pm} andQ={q1,q2, ...,qn} be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimalO(m+n) algorithm is presented for computing the minimum euclidean distance betweena vertexpi inP and a vertexqj inQ.

PAGES

357-364

Journal

TITLE

Computing

ISSUE

4

VOLUME

32

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02243778

DOI

http://dx.doi.org/10.1007/bf02243778

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032338660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "School of Computer Science, McGill University, 805 Sherbrooke Street West, H3A 2K6, Montreal, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toussaint", 
        "givenName": "G. T.", 
        "id": "sg:person.014041144375.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014041144375.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0020-0190(81)90051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003835437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800141.804662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008735354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(83)90041-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010111974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(83)90041-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010111974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(79)90021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015186283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2402.322386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019672179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-6774(85)90039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023570174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(85)90109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035233247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(78)90066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041175680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-664x(82)90023-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048751598"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-12", 
    "datePublishedReg": "1984-12-01", 
    "description": "LetP={p1,p2, ...,pm} andQ={q1,q2, ...,qn} be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimalO(m+n) algorithm is presented for computing the minimum euclidean distance betweena vertexpi inP and a vertexqj inQ.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02243778", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons", 
    "pagination": "357-364", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a0e17f51b8d64f76068b693fa5b7af39b04b790ec94971cf0650627148600ba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02243778"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032338660"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02243778", 
      "https://app.dimensions.ai/details/publication/pub.1032338660"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02243778"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02243778'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02243778'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02243778'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02243778'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      20 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02243778 schema:author Nee18bd2bde694d739e723c7de874dae6
2 schema:citation https://doi.org/10.1016/0020-0190(78)90066-2
3 https://doi.org/10.1016/0020-0190(79)90021-8
4 https://doi.org/10.1016/0020-0190(81)90051-x
5 https://doi.org/10.1016/0146-664x(82)90023-5
6 https://doi.org/10.1016/0167-8655(83)90041-7
7 https://doi.org/10.1016/0196-6774(85)90039-2
8 https://doi.org/10.1016/0898-1221(85)90109-9
9 https://doi.org/10.1145/2402.322386
10 https://doi.org/10.1145/800141.804662
11 schema:datePublished 1984-12
12 schema:datePublishedReg 1984-12-01
13 schema:description LetP={p1,p2, ...,pm} andQ={q1,q2, ...,qn} be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimalO(m+n) algorithm is presented for computing the minimum euclidean distance betweena vertexpi inP and a vertexqj inQ.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N39ac176d5b6847e88195d2bf24520375
18 N4ff9cd03ec684adb803a271382941788
19 sg:journal.1356894
20 schema:name An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons
21 schema:pagination 357-364
22 schema:productId N52e8314c2d4e413988a074ff86c18a30
23 Ne08fa8e70bff4d94a573ac7244f725b0
24 Necee4c050e33445282836a982e21da8b
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032338660
26 https://doi.org/10.1007/bf02243778
27 schema:sdDatePublished 2019-04-11T12:23
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Na763dbc6192a4587ba8cfe734d86d655
30 schema:url http://link.springer.com/10.1007%2FBF02243778
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N39ac176d5b6847e88195d2bf24520375 schema:issueNumber 4
35 rdf:type schema:PublicationIssue
36 N4ff9cd03ec684adb803a271382941788 schema:volumeNumber 32
37 rdf:type schema:PublicationVolume
38 N52e8314c2d4e413988a074ff86c18a30 schema:name dimensions_id
39 schema:value pub.1032338660
40 rdf:type schema:PropertyValue
41 Na763dbc6192a4587ba8cfe734d86d655 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Ne08fa8e70bff4d94a573ac7244f725b0 schema:name readcube_id
44 schema:value 9a0e17f51b8d64f76068b693fa5b7af39b04b790ec94971cf0650627148600ba
45 rdf:type schema:PropertyValue
46 Necee4c050e33445282836a982e21da8b schema:name doi
47 schema:value 10.1007/bf02243778
48 rdf:type schema:PropertyValue
49 Nee18bd2bde694d739e723c7de874dae6 rdf:first sg:person.014041144375.22
50 rdf:rest rdf:nil
51 sg:journal.1356894 schema:issn 1436-5057
52 1521-9615
53 schema:name Computing
54 rdf:type schema:Periodical
55 sg:person.014041144375.22 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
56 schema:familyName Toussaint
57 schema:givenName G. T.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014041144375.22
59 rdf:type schema:Person
60 https://doi.org/10.1016/0020-0190(78)90066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041175680
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1016/0020-0190(79)90021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015186283
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1016/0020-0190(81)90051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003835437
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1016/0146-664x(82)90023-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048751598
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1016/0167-8655(83)90041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010111974
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/0196-6774(85)90039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023570174
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/0898-1221(85)90109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035233247
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1145/2402.322386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019672179
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1145/800141.804662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008735354
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
79 schema:name School of Computer Science, McGill University, 805 Sherbrooke Street West, H3A 2K6, Montreal, Quebec, Canada
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...