Recurrence relations for rational cubic methods II: The Chebyshev method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-12

AUTHORS

V. Candela, A. Marquina

ABSTRACT

We continue the analysis of rational cubic methods, initiated in [7]. In this paper, we obtain a system of a priori error bounds for the Chebyshev method in Banach spaces through a local convergence theorem that provides sufficient conditions on the initial point in order to ensure the convergence of Chebyshev iterates. The error estimates are exact for second degree polynomials. We also discuss some applications. More... »

PAGES

355-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02238803

DOI

http://dx.doi.org/10.1007/bf02238803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038780485


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de An\u00e1lisis Matem\u00e1tico, C/Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departamento de An\u00e1lisis Matem\u00e1tico, C/Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Candela", 
        "givenName": "V.", 
        "id": "sg:person.07444036476.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444036476.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de An\u00e1lisis Matem\u00e1tico, C/Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departamento de An\u00e1lisis Matem\u00e1tico, C/Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marquina", 
        "givenName": "A.", 
        "id": "sg:person.012527154111.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527154111.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02241866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743953", 
          "https://doi.org/10.1007/bf02241866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046016593", 
          "https://doi.org/10.1007/bf00281379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01463998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012618363", 
          "https://doi.org/10.1007/bf01463998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050054511", 
          "https://doi.org/10.1007/bf01389624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002952793", 
          "https://doi.org/10.1007/bf01396176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02237981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009351270", 
          "https://doi.org/10.1007/bf02237981"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-12", 
    "datePublishedReg": "1990-12-01", 
    "description": "We continue the analysis of rational cubic methods, initiated in [7]. In this paper, we obtain a system of a priori error bounds for the Chebyshev method in Banach spaces through a local convergence theorem that provides sufficient conditions on the initial point in order to ensure the convergence of Chebyshev iterates. The error estimates are exact for second degree polynomials. We also discuss some applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02238803", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297324", 
        "issn": [
          "0010-485X", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "Chebyshev method", 
      "local convergence theorem", 
      "Banach spaces", 
      "convergence theorem", 
      "error estimates", 
      "error bounds", 
      "sufficient conditions", 
      "initial point", 
      "recurrence relations", 
      "cubic method", 
      "degree polynomial", 
      "second degree polynomial", 
      "theorem", 
      "Chebyshev", 
      "polynomials", 
      "convergence", 
      "bounds", 
      "Method II", 
      "space", 
      "estimates", 
      "applications", 
      "system", 
      "point", 
      "order", 
      "conditions", 
      "analysis", 
      "relation", 
      "method", 
      "paper", 
      "rational cubic methods", 
      "convergence of Chebyshev", 
      "rational cubic methods II", 
      "cubic methods II"
    ], 
    "name": "Recurrence relations for rational cubic methods II: The Chebyshev method", 
    "pagination": "355-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038780485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02238803"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02238803", 
      "https://app.dimensions.ai/details/publication/pub.1038780485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_243.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02238803"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02238803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02238803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02238803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02238803'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      65 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02238803 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9925c5a6b0a94402933d5d6172fb51d9
4 schema:citation sg:pub.10.1007/bf00281379
5 sg:pub.10.1007/bf01389624
6 sg:pub.10.1007/bf01396176
7 sg:pub.10.1007/bf01463998
8 sg:pub.10.1007/bf02237981
9 sg:pub.10.1007/bf02241866
10 schema:datePublished 1990-12
11 schema:datePublishedReg 1990-12-01
12 schema:description We continue the analysis of rational cubic methods, initiated in [7]. In this paper, we obtain a system of a priori error bounds for the Chebyshev method in Banach spaces through a local convergence theorem that provides sufficient conditions on the initial point in order to ensure the convergence of Chebyshev iterates. The error estimates are exact for second degree polynomials. We also discuss some applications.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N00834548fa6f4080a0ccec91f0ebc20f
17 Ne27e7778e98549d3ab995759a40c8d35
18 sg:journal.1297324
19 schema:keywords Banach spaces
20 Chebyshev
21 Chebyshev method
22 Method II
23 analysis
24 applications
25 bounds
26 conditions
27 convergence
28 convergence of Chebyshev
29 convergence theorem
30 cubic method
31 cubic methods II
32 degree polynomial
33 error bounds
34 error estimates
35 estimates
36 initial point
37 local convergence theorem
38 method
39 order
40 paper
41 point
42 polynomials
43 rational cubic methods
44 rational cubic methods II
45 recurrence relations
46 relation
47 second degree polynomial
48 space
49 sufficient conditions
50 system
51 theorem
52 schema:name Recurrence relations for rational cubic methods II: The Chebyshev method
53 schema:pagination 355-367
54 schema:productId N9098e6eb03e744e9b4827ca340eaee99
55 N9889514c6f954bc796258a1e93e66dba
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
57 https://doi.org/10.1007/bf02238803
58 schema:sdDatePublished 2022-01-01T18:06
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N6262fbe03f884589a9b24b4e4f0b0d91
61 schema:url https://doi.org/10.1007/bf02238803
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N00834548fa6f4080a0ccec91f0ebc20f schema:issueNumber 4
66 rdf:type schema:PublicationIssue
67 N6262fbe03f884589a9b24b4e4f0b0d91 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N74afa732186c413ea6ea43d715e58350 rdf:first sg:person.012527154111.18
70 rdf:rest rdf:nil
71 N9098e6eb03e744e9b4827ca340eaee99 schema:name dimensions_id
72 schema:value pub.1038780485
73 rdf:type schema:PropertyValue
74 N9889514c6f954bc796258a1e93e66dba schema:name doi
75 schema:value 10.1007/bf02238803
76 rdf:type schema:PropertyValue
77 N9925c5a6b0a94402933d5d6172fb51d9 rdf:first sg:person.07444036476.47
78 rdf:rest N74afa732186c413ea6ea43d715e58350
79 Ne27e7778e98549d3ab995759a40c8d35 schema:volumeNumber 45
80 rdf:type schema:PublicationVolume
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1297324 schema:issn 0010-485X
88 1436-5057
89 schema:name Computing
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.012527154111.18 schema:affiliation grid-institutes:None
93 schema:familyName Marquina
94 schema:givenName A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527154111.18
96 rdf:type schema:Person
97 sg:person.07444036476.47 schema:affiliation grid-institutes:None
98 schema:familyName Candela
99 schema:givenName V.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444036476.47
101 rdf:type schema:Person
102 sg:pub.10.1007/bf00281379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046016593
103 https://doi.org/10.1007/bf00281379
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01389624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050054511
106 https://doi.org/10.1007/bf01389624
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01396176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002952793
109 https://doi.org/10.1007/bf01396176
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01463998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012618363
112 https://doi.org/10.1007/bf01463998
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02237981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009351270
115 https://doi.org/10.1007/bf02237981
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02241866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743953
118 https://doi.org/10.1007/bf02241866
119 rdf:type schema:CreativeWork
120 grid-institutes:None schema:alternateName Departamento de Análisis Matemático, C/Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
121 schema:name Departamento de Análisis Matemático, C/Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...