Multifractal dimensions for branched growth View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-12

AUTHORS

Thomas C. Halsey, Katsuya Honda, Bertrand Duplantier

ABSTRACT

A recently proposed theory for diffusion-limited aggregation (DLA), which models this system as a random branched growth process, is reviewed. Like DLA, this process is stochastic, and ensemble averaging is needed in order to define multifractal dimensions. In an earlier work by Halsey and Leibig, annealed average dimensions were computed for this model. In this paper, we compute the quenched average dimensions, which are expected to apply to typical members of the ensemble. We develop a perturbative expansion for the average of the logarithm of the multifractal partition function; the leading and subleading divergent terms in this expansion are then resummed to all orders. The result is that in the limit where the number of particlesn→∞, the quenched and annealed dimensions areidentical; however, the attainment of this limit requires enormous values ofn. At smaller, more realistic values ofn, the apparent quenched dimensions differ from the annealed dimensions. We interpret these results to mean that while multifractality as an ensemble property of random branched growth (and hence of DLA) is quite robust, it subtly fails for typical members of the ensemble. More... »

PAGES

681-743

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02199360

DOI

http://dx.doi.org/10.1007/bf02199360

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027622939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Exxon Research and Engineering, 08801, Annandale, New Jersey", 
          "id": "http://www.grid.ac/institutes/grid.421234.2", 
          "name": [
            "Exxon Research and Engineering, 08801, Annandale, New Jersey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halsey", 
        "givenName": "Thomas C.", 
        "id": "sg:person.07417417117.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417417117.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Shinshu University, 390, Matsumoto, Nagano Pref., Japan", 
          "id": "http://www.grid.ac/institutes/grid.263518.b", 
          "name": [
            "Department of Mathematics, Shinshu University, 390, Matsumoto, Nagano Pref., Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honda", 
        "givenName": "Katsuya", 
        "id": "sg:person.012660013037.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012660013037.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Physique Th\u00e9orique, C.E. Saclay, 91191, Gif-sur-Yvette, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Service de Physique Th\u00e9orique, C.E. Saclay, 91191, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duplantier", 
        "givenName": "Bertrand", 
        "id": "sg:person.011250357011.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250357011.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/309225a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034216315", 
          "https://doi.org/10.1038/309225a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-12", 
    "datePublishedReg": "1996-12-01", 
    "description": "A recently proposed theory for diffusion-limited aggregation (DLA), which models this system as a random branched growth process, is reviewed. Like DLA, this process is stochastic, and ensemble averaging is needed in order to define multifractal dimensions. In an earlier work by Halsey and Leibig, annealed average dimensions were computed for this model. In this paper, we compute the quenched average dimensions, which are expected to apply to typical members of the ensemble. We develop a perturbative expansion for the average of the logarithm of the multifractal partition function; the leading and subleading divergent terms in this expansion are then resummed to all orders. The result is that in the limit where the number of particlesn\u2192\u221e, the quenched and annealed dimensions areidentical; however, the attainment of this limit requires enormous values ofn. At smaller, more realistic values ofn, the apparent quenched dimensions differ from the annealed dimensions. We interpret these results to mean that while multifractality as an ensemble property of random branched growth (and hence of DLA) is quite robust, it subtly fails for typical members of the ensemble.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02199360", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "typical member", 
      "branched growth", 
      "members", 
      "growth", 
      "enormous value", 
      "aggregation", 
      "expansion", 
      "function", 
      "process", 
      "ensemble averaging", 
      "results", 
      "number", 
      "growth process", 
      "ensemble properties", 
      "earlier work", 
      "average dimensions", 
      "order", 
      "system", 
      "ensemble", 
      "average", 
      "work", 
      "model", 
      "properties", 
      "values", 
      "diffusion-limited aggregation", 
      "limit", 
      "logarithm", 
      "terms", 
      "averaging", 
      "dimensions", 
      "realistic values", 
      "theory", 
      "attainment", 
      "Halsey", 
      "paper", 
      "quenched", 
      "partition function", 
      "multifractal dimensions", 
      "perturbative expansion", 
      "divergent terms", 
      "multifractality", 
      "random branched growth process", 
      "branched growth process", 
      "Leibig", 
      "multifractal partition function", 
      "annealed dimensions", 
      "apparent quenched dimensions", 
      "quenched dimensions", 
      "random branched growth"
    ], 
    "name": "Multifractal dimensions for branched growth", 
    "pagination": "681-743", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027622939"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02199360"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02199360", 
      "https://app.dimensions.ai/details/publication/pub.1027622939"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_291.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02199360"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02199360'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02199360'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02199360'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02199360'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      22 PREDICATES      76 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02199360 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N4c31a2d054124bcfb3be1251e9611df2
4 schema:citation sg:pub.10.1038/309225a0
5 schema:datePublished 1996-12
6 schema:datePublishedReg 1996-12-01
7 schema:description A recently proposed theory for diffusion-limited aggregation (DLA), which models this system as a random branched growth process, is reviewed. Like DLA, this process is stochastic, and ensemble averaging is needed in order to define multifractal dimensions. In an earlier work by Halsey and Leibig, annealed average dimensions were computed for this model. In this paper, we compute the quenched average dimensions, which are expected to apply to typical members of the ensemble. We develop a perturbative expansion for the average of the logarithm of the multifractal partition function; the leading and subleading divergent terms in this expansion are then resummed to all orders. The result is that in the limit where the number of particlesn→∞, the quenched and annealed dimensions areidentical; however, the attainment of this limit requires enormous values ofn. At smaller, more realistic values ofn, the apparent quenched dimensions differ from the annealed dimensions. We interpret these results to mean that while multifractality as an ensemble property of random branched growth (and hence of DLA) is quite robust, it subtly fails for typical members of the ensemble.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N57add9aa572e4843a93a7d1d80b6ea1d
12 N6f6a3e382b414fb9b740d98e34070735
13 sg:journal.1040979
14 schema:keywords Halsey
15 Leibig
16 aggregation
17 annealed dimensions
18 apparent quenched dimensions
19 attainment
20 average
21 average dimensions
22 averaging
23 branched growth
24 branched growth process
25 diffusion-limited aggregation
26 dimensions
27 divergent terms
28 earlier work
29 enormous value
30 ensemble
31 ensemble averaging
32 ensemble properties
33 expansion
34 function
35 growth
36 growth process
37 limit
38 logarithm
39 members
40 model
41 multifractal dimensions
42 multifractal partition function
43 multifractality
44 number
45 order
46 paper
47 partition function
48 perturbative expansion
49 process
50 properties
51 quenched
52 quenched dimensions
53 random branched growth
54 random branched growth process
55 realistic values
56 results
57 system
58 terms
59 theory
60 typical member
61 values
62 work
63 schema:name Multifractal dimensions for branched growth
64 schema:pagination 681-743
65 schema:productId N05d3a71601394de281554c9533fec913
66 N4f0842f1670842bd921e879b84fcd830
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027622939
68 https://doi.org/10.1007/bf02199360
69 schema:sdDatePublished 2021-11-01T18:02
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N45f3d1273035481484c5dbeb607eb236
72 schema:url https://doi.org/10.1007/bf02199360
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N05d3a71601394de281554c9533fec913 schema:name doi
77 schema:value 10.1007/bf02199360
78 rdf:type schema:PropertyValue
79 N10c89a38347d48308c7052b776c65945 rdf:first sg:person.011250357011.46
80 rdf:rest rdf:nil
81 N19f51ec094ef4d05a568264f01dbf89f rdf:first sg:person.012660013037.55
82 rdf:rest N10c89a38347d48308c7052b776c65945
83 N45f3d1273035481484c5dbeb607eb236 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N4c31a2d054124bcfb3be1251e9611df2 rdf:first sg:person.07417417117.67
86 rdf:rest N19f51ec094ef4d05a568264f01dbf89f
87 N4f0842f1670842bd921e879b84fcd830 schema:name dimensions_id
88 schema:value pub.1027622939
89 rdf:type schema:PropertyValue
90 N57add9aa572e4843a93a7d1d80b6ea1d schema:issueNumber 5-6
91 rdf:type schema:PublicationIssue
92 N6f6a3e382b414fb9b740d98e34070735 schema:volumeNumber 85
93 rdf:type schema:PublicationVolume
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1040979 schema:issn 0022-4715
101 1572-9613
102 schema:name Journal of Statistical Physics
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.011250357011.46 schema:affiliation grid-institutes:None
106 schema:familyName Duplantier
107 schema:givenName Bertrand
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250357011.46
109 rdf:type schema:Person
110 sg:person.012660013037.55 schema:affiliation grid-institutes:grid.263518.b
111 schema:familyName Honda
112 schema:givenName Katsuya
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012660013037.55
114 rdf:type schema:Person
115 sg:person.07417417117.67 schema:affiliation grid-institutes:grid.421234.2
116 schema:familyName Halsey
117 schema:givenName Thomas C.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417417117.67
119 rdf:type schema:Person
120 sg:pub.10.1038/309225a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034216315
121 https://doi.org/10.1038/309225a0
122 rdf:type schema:CreativeWork
123 grid-institutes:None schema:alternateName Service de Physique Théorique, C.E. Saclay, 91191, Gif-sur-Yvette, France
124 schema:name Service de Physique Théorique, C.E. Saclay, 91191, Gif-sur-Yvette, France
125 rdf:type schema:Organization
126 grid-institutes:grid.263518.b schema:alternateName Department of Mathematics, Shinshu University, 390, Matsumoto, Nagano Pref., Japan
127 schema:name Department of Mathematics, Shinshu University, 390, Matsumoto, Nagano Pref., Japan
128 rdf:type schema:Organization
129 grid-institutes:grid.421234.2 schema:alternateName Exxon Research and Engineering, 08801, Annandale, New Jersey
130 schema:name Exxon Research and Engineering, 08801, Annandale, New Jersey
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...