On the complete solution of ∈y″=y3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-02

AUTHORS

P. N. Müller, K. -D. Reinsch, R. Bulirsch

ABSTRACT

In Ref. 1, the author claimed that the problem ∈y″=y3 is soluble only for a certain range of the parameter ∈. An analytic approach, as adopted in the following contribution, reveals that a unique solution exists for any positive value of ∈. The solution is given in closed form by means of Jacobian elliptic functions, which can be numerically computed very efficiently. In the limit ∈→0+, the solutions exhibit boundary-layer behavior at both endpoints. An easily interpretable approximate solution for small ∈ is obtained using a three-variable approach. More... »

PAGES

367-372

References to SciGraph publications

  • 1986-09. On the solution of εy″=y3 in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1965-02. Numerical calculation of elliptic integrals and elliptic functions in NUMERISCHE MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02192942

    DOI

    http://dx.doi.org/10.1007/bf02192942

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010726532


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Technology, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Department of Mathematics, University of Technology, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "P. N.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Technology, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Department of Mathematics, University of Technology, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reinsch", 
            "givenName": "K. -D.", 
            "id": "sg:person.010631610653.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010631610653.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Technology, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Department of Mathematics, University of Technology, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bulirsch", 
            "givenName": "R.", 
            "id": "sg:person.0767272315.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272315.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01397975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004895404", 
              "https://doi.org/10.1007/bf01397975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00938636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008359991", 
              "https://doi.org/10.1007/bf00938636"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-02", 
        "datePublishedReg": "1994-02-01", 
        "description": "In Ref. 1, the author claimed that the problem \u2208y\u2033=y3 is soluble only for a certain range of the parameter \u2208. An analytic approach, as adopted in the following contribution, reveals that a unique solution exists for any positive value of \u2208. The solution is given in closed form by means of Jacobian elliptic functions, which can be numerically computed very efficiently. In the limit \u2208\u21920+, the solutions exhibit boundary-layer behavior at both endpoints. An easily interpretable approximate solution for small \u2208 is obtained using a three-variable approach.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02192942", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "80"
          }
        ], 
        "keywords": [
          "boundary layer behavior", 
          "Jacobian elliptic functions", 
          "elliptic functions", 
          "approximate solution", 
          "Ref. 1", 
          "certain range", 
          "unique solution", 
          "closed form", 
          "solution", 
          "complete solution", 
          "analytic approach", 
          "parameters", 
          "positive values", 
          "behavior", 
          "problem", 
          "range", 
          "approach", 
          "limit", 
          "values", 
          "means", 
          "contribution", 
          "function", 
          "form", 
          "authors", 
          "endpoint"
        ], 
        "name": "On the complete solution of \u2208y\u2033=y3", 
        "pagination": "367-372", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010726532"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02192942"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02192942", 
          "https://app.dimensions.ai/details/publication/pub.1010726532"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_238.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02192942"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02192942'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02192942'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02192942'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02192942'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      22 PREDICATES      53 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02192942 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N024e14f1b65842afbb90631fea8b864a
    4 schema:citation sg:pub.10.1007/bf00938636
    5 sg:pub.10.1007/bf01397975
    6 schema:datePublished 1994-02
    7 schema:datePublishedReg 1994-02-01
    8 schema:description In Ref. 1, the author claimed that the problem ∈y″=y3 is soluble only for a certain range of the parameter ∈. An analytic approach, as adopted in the following contribution, reveals that a unique solution exists for any positive value of ∈. The solution is given in closed form by means of Jacobian elliptic functions, which can be numerically computed very efficiently. In the limit ∈→0+, the solutions exhibit boundary-layer behavior at both endpoints. An easily interpretable approximate solution for small ∈ is obtained using a three-variable approach.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N2dd95303b210483db570da79867ca9dd
    13 N7af146f2191d442d957016527e3f4bd2
    14 sg:journal.1044187
    15 schema:keywords Jacobian elliptic functions
    16 Ref. 1
    17 analytic approach
    18 approach
    19 approximate solution
    20 authors
    21 behavior
    22 boundary layer behavior
    23 certain range
    24 closed form
    25 complete solution
    26 contribution
    27 elliptic functions
    28 endpoint
    29 form
    30 function
    31 limit
    32 means
    33 parameters
    34 positive values
    35 problem
    36 range
    37 solution
    38 unique solution
    39 values
    40 schema:name On the complete solution of ∈y″=y3
    41 schema:pagination 367-372
    42 schema:productId N860727f01b164fb18188699514fd6270
    43 Nef925fb814a2481fa80a83822b564bae
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010726532
    45 https://doi.org/10.1007/bf02192942
    46 schema:sdDatePublished 2022-06-01T21:59
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N9a34397e6bc648949b50dfcc09c8dcc9
    49 schema:url https://doi.org/10.1007/bf02192942
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N024e14f1b65842afbb90631fea8b864a rdf:first N89b1350945af44d2beb19c38b67de9fe
    54 rdf:rest N3bcdc9494b2143fdbb1bbd96d80934f3
    55 N2dd95303b210483db570da79867ca9dd schema:issueNumber 2
    56 rdf:type schema:PublicationIssue
    57 N3bcdc9494b2143fdbb1bbd96d80934f3 rdf:first sg:person.010631610653.17
    58 rdf:rest N3e021123791c4c359238cc70389f8c27
    59 N3e021123791c4c359238cc70389f8c27 rdf:first sg:person.0767272315.31
    60 rdf:rest rdf:nil
    61 N7af146f2191d442d957016527e3f4bd2 schema:volumeNumber 80
    62 rdf:type schema:PublicationVolume
    63 N860727f01b164fb18188699514fd6270 schema:name dimensions_id
    64 schema:value pub.1010726532
    65 rdf:type schema:PropertyValue
    66 N89b1350945af44d2beb19c38b67de9fe schema:affiliation grid-institutes:grid.6936.a
    67 schema:familyName Müller
    68 schema:givenName P. N.
    69 rdf:type schema:Person
    70 N9a34397e6bc648949b50dfcc09c8dcc9 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nef925fb814a2481fa80a83822b564bae schema:name doi
    73 schema:value 10.1007/bf02192942
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1044187 schema:issn 0022-3239
    82 1573-2878
    83 schema:name Journal of Optimization Theory and Applications
    84 schema:publisher Springer Nature
    85 rdf:type schema:Periodical
    86 sg:person.010631610653.17 schema:affiliation grid-institutes:grid.6936.a
    87 schema:familyName Reinsch
    88 schema:givenName K. -D.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010631610653.17
    90 rdf:type schema:Person
    91 sg:person.0767272315.31 schema:affiliation grid-institutes:grid.6936.a
    92 schema:familyName Bulirsch
    93 schema:givenName R.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272315.31
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf00938636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008359991
    97 https://doi.org/10.1007/bf00938636
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01397975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004895404
    100 https://doi.org/10.1007/bf01397975
    101 rdf:type schema:CreativeWork
    102 grid-institutes:grid.6936.a schema:alternateName Department of Mathematics, University of Technology, Munich, Germany
    103 schema:name Department of Mathematics, University of Technology, Munich, Germany
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...