Room designs and one-factorizations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-12

AUTHORS

J. D. Horton

ABSTRACT

The existence of a Room square of order 2n is known to be equivalent to the existence of two orthogonal one-factorizations of the complete graph on 2n vertices, where “orthogonal” means “any two one-factors involved have at most one edge in common.” DefineR(n) to be the maximal number of pairwise orthogonal one-factorizations of the complete graph onn vertices. The main results of this paper are bounds on the functionR. If there is a strong starter of order 2n−1 thenR(2n) ≥ 3. If 4n−1 is a prime power, it is shown thatR(4n) ≥ 2n−1. Also, the recursive construction for Room squares, to obtain, a Room design of sidev(u − w) +w from a Room design of sidev and a Room design of sideu with a subdesign of sidew, is generalized to sets ofk pairwise orthogonal factorizations. It is further shown thatR(2n) ≤ 2n−3. More... »

PAGES

56-63

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02190160

DOI

http://dx.doi.org/10.1007/bf02190160

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033109860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "224 Tarneaud, P3B 2X1, Sudbury, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horton", 
        "givenName": "J. D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01833236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014114392", 
          "https://doi.org/10.1007/bf01833236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01833236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014114392", 
          "https://doi.org/10.1007/bf01833236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01834113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018039054", 
          "https://doi.org/10.1007/bf01834113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01834113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018039054", 
          "https://doi.org/10.1007/bf01834113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(75)90048-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030898474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036778583", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036778583", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01818519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038922377", 
          "https://doi.org/10.1007/bf01818519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01818519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038922377", 
          "https://doi.org/10.1007/bf01818519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177696995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-1969-063-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072269769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-1969-063-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072269769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177698135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085485077"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-12", 
    "datePublishedReg": "1981-12-01", 
    "description": "The existence of a Room square of order 2n is known to be equivalent to the existence of two orthogonal one-factorizations of the complete graph on 2n vertices, where \u201corthogonal\u201d means \u201cany two one-factors involved have at most one edge in common.\u201d DefineR(n) to be the maximal number of pairwise orthogonal one-factorizations of the complete graph onn vertices. The main results of this paper are bounds on the functionR. If there is a strong starter of order 2n\u22121 thenR(2n) \u2265 3. If 4n\u22121 is a prime power, it is shown thatR(4n) \u2265 2n\u22121. Also, the recursive construction for Room squares, to obtain, a Room design of sidev(u \u2212 w) +w from a Room design of sidev and a Room design of sideu with a subdesign of sidew, is generalized to sets ofk pairwise orthogonal factorizations. It is further shown thatR(2n) \u2264 2n\u22123.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02190160", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Room designs and one-factorizations", 
    "pagination": "56-63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9dbac06f4cff0bc4874b4bc2c430360ca8a0541208e48b5b019ae19c3a47dd61"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02190160"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033109860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02190160", 
      "https://app.dimensions.ai/details/publication/pub.1033109860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53978_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02190160"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02190160 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1cd4a68d97a541e380e842150a87fcd4
4 schema:citation sg:pub.10.1007/bf01818519
5 sg:pub.10.1007/bf01833236
6 sg:pub.10.1007/bf01834113
7 https://app.dimensions.ai/details/publication/pub.1036778583
8 https://doi.org/10.1016/0012-365x(75)90048-5
9 https://doi.org/10.1214/aoms/1177696995
10 https://doi.org/10.1214/aoms/1177698135
11 https://doi.org/10.4153/cmb-1969-063-6
12 schema:datePublished 1981-12
13 schema:datePublishedReg 1981-12-01
14 schema:description The existence of a Room square of order 2n is known to be equivalent to the existence of two orthogonal one-factorizations of the complete graph on 2n vertices, where “orthogonal” means “any two one-factors involved have at most one edge in common.” DefineR(n) to be the maximal number of pairwise orthogonal one-factorizations of the complete graph onn vertices. The main results of this paper are bounds on the functionR. If there is a strong starter of order 2n−1 thenR(2n) ≥ 3. If 4n−1 is a prime power, it is shown thatR(4n) ≥ 2n−1. Also, the recursive construction for Room squares, to obtain, a Room design of sidev(u − w) +w from a Room design of sidev and a Room design of sideu with a subdesign of sidew, is generalized to sets ofk pairwise orthogonal factorizations. It is further shown thatR(2n) ≤ 2n−3.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N6f8562cdfede4b0bae444a5bcab3cc86
19 Ncc409e86fe7f4be19e726adb263e920d
20 sg:journal.1136868
21 schema:name Room designs and one-factorizations
22 schema:pagination 56-63
23 schema:productId N4bcf2d66cd904954aa5bd3616255a197
24 N7981ba914d4c43cba8ed80a32edcfa1b
25 N88aa4b2b2c244b1ba74ee84782cd4a2b
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033109860
27 https://doi.org/10.1007/bf02190160
28 schema:sdDatePublished 2019-04-11T12:11
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb5fbe877f44c4245962abd48de4699e3
31 schema:url http://link.springer.com/10.1007%2FBF02190160
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0bfe2289f37244e1b5f76ef3e9c7e4f5 schema:name 224 Tarneaud, P3B 2X1, Sudbury, Ontario, Canada
36 rdf:type schema:Organization
37 N1cd4a68d97a541e380e842150a87fcd4 rdf:first Nfcf18dc38750447da0ce59f6db31755d
38 rdf:rest rdf:nil
39 N4bcf2d66cd904954aa5bd3616255a197 schema:name readcube_id
40 schema:value 9dbac06f4cff0bc4874b4bc2c430360ca8a0541208e48b5b019ae19c3a47dd61
41 rdf:type schema:PropertyValue
42 N6f8562cdfede4b0bae444a5bcab3cc86 schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 N7981ba914d4c43cba8ed80a32edcfa1b schema:name dimensions_id
45 schema:value pub.1033109860
46 rdf:type schema:PropertyValue
47 N88aa4b2b2c244b1ba74ee84782cd4a2b schema:name doi
48 schema:value 10.1007/bf02190160
49 rdf:type schema:PropertyValue
50 Nb5fbe877f44c4245962abd48de4699e3 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Ncc409e86fe7f4be19e726adb263e920d schema:volumeNumber 22
53 rdf:type schema:PublicationVolume
54 Nfcf18dc38750447da0ce59f6db31755d schema:affiliation N0bfe2289f37244e1b5f76ef3e9c7e4f5
55 schema:familyName Horton
56 schema:givenName J. D.
57 rdf:type schema:Person
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136868 schema:issn 0001-9054
65 1420-8903
66 schema:name Aequationes mathematicae
67 rdf:type schema:Periodical
68 sg:pub.10.1007/bf01818519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038922377
69 https://doi.org/10.1007/bf01818519
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf01833236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014114392
72 https://doi.org/10.1007/bf01833236
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf01834113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018039054
75 https://doi.org/10.1007/bf01834113
76 rdf:type schema:CreativeWork
77 https://app.dimensions.ai/details/publication/pub.1036778583 schema:CreativeWork
78 https://doi.org/10.1016/0012-365x(75)90048-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898474
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1214/aoms/1177696995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398817
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1214/aoms/1177698135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085485077
83 rdf:type schema:CreativeWork
84 https://doi.org/10.4153/cmb-1969-063-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072269769
85 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...