Room designs and one-factorizations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-12

AUTHORS

J. D. Horton

ABSTRACT

The existence of a Room square of order 2n is known to be equivalent to the existence of two orthogonal one-factorizations of the complete graph on 2n vertices, where “orthogonal” means “any two one-factors involved have at most one edge in common.” DefineR(n) to be the maximal number of pairwise orthogonal one-factorizations of the complete graph onn vertices. The main results of this paper are bounds on the functionR. If there is a strong starter of order 2n−1 thenR(2n) ≥ 3. If 4n−1 is a prime power, it is shown thatR(4n) ≥ 2n−1. Also, the recursive construction for Room squares, to obtain, a Room design of sidev(u − w) +w from a Room design of sidev and a Room design of sideu with a subdesign of sidew, is generalized to sets ofk pairwise orthogonal factorizations. It is further shown thatR(2n) ≤ 2n−3. More... »

PAGES

56-63

References to SciGraph publications

  • 1971-02. A recursive construction for Room designs in AEQUATIONES MATHEMATICAE
  • 1975-02. The existence of Room squares in AEQUATIONES MATHEMATICAE
  • 1971-06. Puintuplication of Room squares in AEQUATIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02190160

    DOI

    http://dx.doi.org/10.1007/bf02190160

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033109860


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "224 Tarneaud, P3B 2X1, Sudbury, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Horton", 
            "givenName": "J. D.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01833236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014114392", 
              "https://doi.org/10.1007/bf01833236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01833236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014114392", 
              "https://doi.org/10.1007/bf01833236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01834113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018039054", 
              "https://doi.org/10.1007/bf01834113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01834113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018039054", 
              "https://doi.org/10.1007/bf01834113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(75)90048-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030898474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036778583", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036778583", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177696995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064398817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cmb-1969-063-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072269769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cmb-1969-063-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072269769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177698135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085485077"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1981-12", 
        "datePublishedReg": "1981-12-01", 
        "description": "The existence of a Room square of order 2n is known to be equivalent to the existence of two orthogonal one-factorizations of the complete graph on 2n vertices, where \u201corthogonal\u201d means \u201cany two one-factors involved have at most one edge in common.\u201d DefineR(n) to be the maximal number of pairwise orthogonal one-factorizations of the complete graph onn vertices. The main results of this paper are bounds on the functionR. If there is a strong starter of order 2n\u22121 thenR(2n) \u2265 3. If 4n\u22121 is a prime power, it is shown thatR(4n) \u2265 2n\u22121. Also, the recursive construction for Room squares, to obtain, a Room design of sidev(u \u2212 w) +w from a Room design of sidev and a Room design of sideu with a subdesign of sidew, is generalized to sets ofk pairwise orthogonal factorizations. It is further shown thatR(2n) \u2264 2n\u22123.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02190160", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136868", 
            "issn": [
              "0001-9054", 
              "1420-8903"
            ], 
            "name": "Aequationes mathematicae", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Room designs and one-factorizations", 
        "pagination": "56-63", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9dbac06f4cff0bc4874b4bc2c430360ca8a0541208e48b5b019ae19c3a47dd61"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02190160"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033109860"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02190160", 
          "https://app.dimensions.ai/details/publication/pub.1033109860"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53978_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02190160"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02190160'


     

    This table displays all metadata directly associated to this object as RDF triples.

    85 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02190160 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4fc8449f731c4bf9b84e2d99b790544b
    4 schema:citation sg:pub.10.1007/bf01818519
    5 sg:pub.10.1007/bf01833236
    6 sg:pub.10.1007/bf01834113
    7 https://app.dimensions.ai/details/publication/pub.1036778583
    8 https://doi.org/10.1016/0012-365x(75)90048-5
    9 https://doi.org/10.1214/aoms/1177696995
    10 https://doi.org/10.1214/aoms/1177698135
    11 https://doi.org/10.4153/cmb-1969-063-6
    12 schema:datePublished 1981-12
    13 schema:datePublishedReg 1981-12-01
    14 schema:description The existence of a Room square of order 2n is known to be equivalent to the existence of two orthogonal one-factorizations of the complete graph on 2n vertices, where “orthogonal” means “any two one-factors involved have at most one edge in common.” DefineR(n) to be the maximal number of pairwise orthogonal one-factorizations of the complete graph onn vertices. The main results of this paper are bounds on the functionR. If there is a strong starter of order 2n−1 thenR(2n) ≥ 3. If 4n−1 is a prime power, it is shown thatR(4n) ≥ 2n−1. Also, the recursive construction for Room squares, to obtain, a Room design of sidev(u − w) +w from a Room design of sidev and a Room design of sideu with a subdesign of sidew, is generalized to sets ofk pairwise orthogonal factorizations. It is further shown thatR(2n) ≤ 2n−3.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N7ef81e11427742059627b15101d85fb1
    19 Nd10299a154aa4d38a5dd815817ca046a
    20 sg:journal.1136868
    21 schema:name Room designs and one-factorizations
    22 schema:pagination 56-63
    23 schema:productId N14491a38bcc143f18fe9b120f63443f1
    24 Na99439f064094cff8dd9bb8311f6114c
    25 Nc7698309dc2344ddabcdc0c0f528ded4
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033109860
    27 https://doi.org/10.1007/bf02190160
    28 schema:sdDatePublished 2019-04-11T12:11
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N1312286262f84934a33e51dfdde30cc7
    31 schema:url http://link.springer.com/10.1007%2FBF02190160
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1312286262f84934a33e51dfdde30cc7 schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N14491a38bcc143f18fe9b120f63443f1 schema:name dimensions_id
    38 schema:value pub.1033109860
    39 rdf:type schema:PropertyValue
    40 N3efb9d20ebdf4f9a8d8226b1caf42bb5 schema:name 224 Tarneaud, P3B 2X1, Sudbury, Ontario, Canada
    41 rdf:type schema:Organization
    42 N4fc8449f731c4bf9b84e2d99b790544b rdf:first Nd250a64582424d3c81d00517411fd03a
    43 rdf:rest rdf:nil
    44 N7ef81e11427742059627b15101d85fb1 schema:volumeNumber 22
    45 rdf:type schema:PublicationVolume
    46 Na99439f064094cff8dd9bb8311f6114c schema:name readcube_id
    47 schema:value 9dbac06f4cff0bc4874b4bc2c430360ca8a0541208e48b5b019ae19c3a47dd61
    48 rdf:type schema:PropertyValue
    49 Nc7698309dc2344ddabcdc0c0f528ded4 schema:name doi
    50 schema:value 10.1007/bf02190160
    51 rdf:type schema:PropertyValue
    52 Nd10299a154aa4d38a5dd815817ca046a schema:issueNumber 1
    53 rdf:type schema:PublicationIssue
    54 Nd250a64582424d3c81d00517411fd03a schema:affiliation N3efb9d20ebdf4f9a8d8226b1caf42bb5
    55 schema:familyName Horton
    56 schema:givenName J. D.
    57 rdf:type schema:Person
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1136868 schema:issn 0001-9054
    65 1420-8903
    66 schema:name Aequationes mathematicae
    67 rdf:type schema:Periodical
    68 sg:pub.10.1007/bf01818519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038922377
    69 https://doi.org/10.1007/bf01818519
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/bf01833236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014114392
    72 https://doi.org/10.1007/bf01833236
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf01834113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018039054
    75 https://doi.org/10.1007/bf01834113
    76 rdf:type schema:CreativeWork
    77 https://app.dimensions.ai/details/publication/pub.1036778583 schema:CreativeWork
    78 https://doi.org/10.1016/0012-365x(75)90048-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898474
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1214/aoms/1177696995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398817
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1214/aoms/1177698135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085485077
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.4153/cmb-1969-063-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072269769
    85 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...