Elliptic semiplanes and group divisible designs with orthogonal resolutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-12

AUTHORS

E. R. Lamken, S. A. Vanstone

ABSTRACT

In this paper we prove that there exists an elliptic semiplaneS(v, k, m) withk −m ≧ 2 if and only if there exists a group divisible design GDDk((k −m)(k − 1);k −m; 0, 1) withm pairwise orthogonal resolutions. As an example of this theorem, we construct an elliptic semiplaneW(45, 7, 3) and show thatW is isomorphic to the elliptic semiplaneS(45, 7, 3) given by R. D. Baker. More... »

PAGES

80-92

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02189913

DOI

http://dx.doi.org/10.1007/bf02189913

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035296229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lamken", 
        "givenName": "E. R.", 
        "id": "sg:person.010160447036.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010160447036.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "S. A.", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1986-12", 
    "datePublishedReg": "1986-12-01", 
    "description": "In this paper we prove that there exists an elliptic semiplaneS(v, k, m) withk \u2212m \u2267 2 if and only if there exists a group divisible design GDDk((k \u2212m)(k \u2212 1);k \u2212m; 0, 1) withm pairwise orthogonal resolutions. As an example of this theorem, we construct an elliptic semiplaneW(45, 7, 3) and show thatW is isomorphic to the elliptic semiplaneS(45, 7, 3) given by R. D. Baker.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02189913", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "orthogonal resolutions", 
      "design", 
      "resolution", 
      "elliptic semiplanes", 
      "thatw", 
      "semiplane", 
      "example", 
      "D. Baker", 
      "withk", 
      "group divisible designs", 
      "theorem", 
      "divisible designs", 
      "Baker", 
      "paper"
    ], 
    "name": "Elliptic semiplanes and group divisible designs with orthogonal resolutions", 
    "pagination": "80-92", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035296229"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02189913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02189913", 
      "https://app.dimensions.ai/details/publication/pub.1035296229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_216.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02189913"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02189913'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02189913'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02189913'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02189913'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02189913 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5c43e9e57f164dd383c45ee55c9641fb
4 schema:datePublished 1986-12
5 schema:datePublishedReg 1986-12-01
6 schema:description In this paper we prove that there exists an elliptic semiplaneS(v, k, m) withk −m ≧ 2 if and only if there exists a group divisible design GDDk((k −m)(k − 1);k −m; 0, 1) withm pairwise orthogonal resolutions. As an example of this theorem, we construct an elliptic semiplaneW(45, 7, 3) and show thatW is isomorphic to the elliptic semiplaneS(45, 7, 3) given by R. D. Baker.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N5258d5a3be3e41db8bc38e14629d53e2
10 Nd37f300f82634bc39b48827107fb13ff
11 sg:journal.1136868
12 schema:keywords Baker
13 D. Baker
14 design
15 divisible designs
16 elliptic semiplanes
17 example
18 group divisible designs
19 orthogonal resolutions
20 paper
21 resolution
22 semiplane
23 thatw
24 theorem
25 withk
26 schema:name Elliptic semiplanes and group divisible designs with orthogonal resolutions
27 schema:pagination 80-92
28 schema:productId N2ef07607fa6f466199a7e839684cc5a4
29 Nb1be04c83df448d887f9df9752060f0b
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035296229
31 https://doi.org/10.1007/bf02189913
32 schema:sdDatePublished 2022-10-01T06:28
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nb6faa69c29fb4e4aa508ae76da08d2fe
35 schema:url https://doi.org/10.1007/bf02189913
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N2ef07607fa6f466199a7e839684cc5a4 schema:name dimensions_id
40 schema:value pub.1035296229
41 rdf:type schema:PropertyValue
42 N46ce29c154814a1dac93ff8b002a5dde rdf:first sg:person.010344544767.07
43 rdf:rest rdf:nil
44 N5258d5a3be3e41db8bc38e14629d53e2 schema:volumeNumber 30
45 rdf:type schema:PublicationVolume
46 N5c43e9e57f164dd383c45ee55c9641fb rdf:first sg:person.010160447036.50
47 rdf:rest N46ce29c154814a1dac93ff8b002a5dde
48 Nb1be04c83df448d887f9df9752060f0b schema:name doi
49 schema:value 10.1007/bf02189913
50 rdf:type schema:PropertyValue
51 Nb6faa69c29fb4e4aa508ae76da08d2fe schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nd37f300f82634bc39b48827107fb13ff schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136868 schema:issn 0001-9054
62 1420-8903
63 schema:name Aequationes mathematicae
64 schema:publisher Springer Nature
65 rdf:type schema:Periodical
66 sg:person.010160447036.50 schema:affiliation grid-institutes:grid.46078.3d
67 schema:familyName Lamken
68 schema:givenName E. R.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010160447036.50
70 rdf:type schema:Person
71 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
72 schema:familyName Vanstone
73 schema:givenName S. A.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
75 rdf:type schema:Person
76 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada
77 schema:name Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada
78 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...