Variations on seven points: An introduction to the scope and methods of coding theory and finite geometries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-12

AUTHORS

Thomas Beth, Dieter Jungnickel

ABSTRACT

and IntroductionWe use a simple example (the projective plane on seven points) to give an introductory survey on the problems and methods in finite geometries — an area of mathematics related to geometry, combinatorial theory, algebra, group theory and number theory as well as to applied mathematics (e.g., coding theory, information theory, statistical design of experiments, tomography, cryptography, etc.). As this list already indicates, finite geometries is — both from the point of view of pure mathematics and from that of applications related to computer science and communication engineering — one of the most interesting and active fields of mathematics. It is the aim of this paper to introduce the nonspecialist to some of these aspects. More... »

PAGES

153-176

References to SciGraph publications

  • 1969. Transitive Erweiterungen endlicher Permutationsgruppen in NONE
  • 1982. Finite Groups III in NONE
  • 1968-03. A characterization of the Mathieu groupM11 in MATHEMATISCHE ZEITSCHRIFT
  • 1975. Projektive Ebenen in NONE
  • 1937-12. Die 5-fach transitiven gruppen von mathieu in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 1937-12. über Steinersche Systeme in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 1974. Combinatorial Theory Seminar Eindhoven University of Technology in NONE
  • 1971. Coding Theory in NONE
  • 1971. Cyclic Difference Sets in NONE
  • 1915-03. Der Endlichkeitssatz der Invarianten endlicher Gruppen in MATHEMATISCHE ANNALEN
  • 1981. Mathieu groups, With designs, and Golay codes in GEOMETRIES AND GROUPS
  • 1982. Finite Groups II in NONE
  • 1967. Endliche Gruppen I in NONE
  • 1975-10. Endliche zyklische Ebenen in MATHEMATISCHE ZEITSCHRIFT
  • 1972. Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02189613

    DOI

    http://dx.doi.org/10.1007/bf02189613

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040296968


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut der Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany", 
              "id": "http://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Institut f\u00fcr Mathematische Maschinen und Datenverarbeitung I, Universit\u00e4t Erlangen, Martenstr. 3, D-8520, Erlangen, F.R. Germany", 
                "Mathematisches Institut der Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beth", 
            "givenName": "Thomas", 
            "id": "sg:person.015012354601.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012354601.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut der Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany", 
              "id": "http://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Institut f\u00fcr Mathematische Maschinen und Datenverarbeitung I, Universit\u00e4t Erlangen, Martenstr. 3, D-8520, Erlangen, F.R. Germany", 
                "Mathematisches Institut der Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0077135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049166468", 
              "https://doi.org/10.1007/bfb0077135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-66148-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051111469", 
              "https://doi.org/10.1007/978-3-642-66148-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01110124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004718721", 
              "https://doi.org/10.1007/bf01110124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-20712-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047722932", 
              "https://doi.org/10.1007/978-3-662-20712-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0069907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036778583", 
              "https://doi.org/10.1007/bfb0069907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036351425", 
              "https://doi.org/10.1007/bf01214135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0091016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034798025", 
              "https://doi.org/10.1007/bfb0091016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0061260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003587687", 
              "https://doi.org/10.1007/bfb0061260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-64981-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019501154", 
              "https://doi.org/10.1007/978-3-642-64981-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0057319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045411150", 
              "https://doi.org/10.1007/bfb0057319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02948947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009538476", 
              "https://doi.org/10.1007/bf02948947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-67994-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026691400", 
              "https://doi.org/10.1007/978-3-642-67994-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01456821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041934113", 
              "https://doi.org/10.1007/bf01456821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-67997-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015407999", 
              "https://doi.org/10.1007/978-3-642-67997-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02948948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027200132", 
              "https://doi.org/10.1007/bf02948948"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1982-12", 
        "datePublishedReg": "1982-12-01", 
        "description": "Abstract and IntroductionWe use a simple example (the projective plane on seven points) to give an introductory survey on the problems and methods in finite geometries \u2014 an area of mathematics related to geometry, combinatorial theory, algebra, group theory and number theory as well as to applied mathematics (e.g., coding theory, information theory, statistical design of experiments, tomography, cryptography, etc.). As this list already indicates, finite geometries is \u2014 both from the point of view of pure mathematics and from that of applications related to computer science and communication engineering \u2014 one of the most interesting and active fields of mathematics. It is the aim of this paper to introduce the nonspecialist to some of these aspects.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02189613", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136868", 
            "issn": [
              "0001-9054", 
              "1420-8903"
            ], 
            "name": "Aequationes mathematicae", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "finite geometry", 
          "areas of mathematics", 
          "pure mathematics", 
          "number theory", 
          "combinatorial theory", 
          "group theory", 
          "simple example", 
          "mathematics", 
          "computer science", 
          "communication engineering", 
          "introductory survey", 
          "theory", 
          "active field", 
          "geometry", 
          "algebra", 
          "point of view", 
          "problem", 
          "point", 
          "engineering", 
          "applications", 
          "method", 
          "nonspecialists", 
          "example", 
          "scope", 
          "list", 
          "view", 
          "field", 
          "science", 
          "aspects", 
          "introduction", 
          "area", 
          "variation", 
          "survey", 
          "aim", 
          "IntroductionWe", 
          "paper"
        ], 
        "name": "Variations on seven points: An introduction to the scope and methods of coding theory and finite geometries", 
        "pagination": "153-176", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040296968"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02189613"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02189613", 
          "https://app.dimensions.ai/details/publication/pub.1040296968"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_171.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02189613"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02189613'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02189613'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02189613'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02189613'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      22 PREDICATES      78 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02189613 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author N01656136142141d19d82259c8ace4fcc
    5 schema:citation sg:pub.10.1007/978-3-642-64981-3
    6 sg:pub.10.1007/978-3-642-66148-8
    7 sg:pub.10.1007/978-3-642-67994-0
    8 sg:pub.10.1007/978-3-642-67997-1
    9 sg:pub.10.1007/978-3-662-20712-3
    10 sg:pub.10.1007/bf01110124
    11 sg:pub.10.1007/bf01214135
    12 sg:pub.10.1007/bf01456821
    13 sg:pub.10.1007/bf02948947
    14 sg:pub.10.1007/bf02948948
    15 sg:pub.10.1007/bfb0057319
    16 sg:pub.10.1007/bfb0061260
    17 sg:pub.10.1007/bfb0069907
    18 sg:pub.10.1007/bfb0077135
    19 sg:pub.10.1007/bfb0091016
    20 schema:datePublished 1982-12
    21 schema:datePublishedReg 1982-12-01
    22 schema:description Abstract and IntroductionWe use a simple example (the projective plane on seven points) to give an introductory survey on the problems and methods in finite geometries — an area of mathematics related to geometry, combinatorial theory, algebra, group theory and number theory as well as to applied mathematics (e.g., coding theory, information theory, statistical design of experiments, tomography, cryptography, etc.). As this list already indicates, finite geometries is — both from the point of view of pure mathematics and from that of applications related to computer science and communication engineering — one of the most interesting and active fields of mathematics. It is the aim of this paper to introduce the nonspecialist to some of these aspects.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N4e3cec1b4dac40b8a4693492d1d41ca0
    27 Nc126a185bec84badbccb78cbcf2c2009
    28 sg:journal.1136868
    29 schema:keywords IntroductionWe
    30 active field
    31 aim
    32 algebra
    33 applications
    34 area
    35 areas of mathematics
    36 aspects
    37 combinatorial theory
    38 communication engineering
    39 computer science
    40 engineering
    41 example
    42 field
    43 finite geometry
    44 geometry
    45 group theory
    46 introduction
    47 introductory survey
    48 list
    49 mathematics
    50 method
    51 nonspecialists
    52 number theory
    53 paper
    54 point
    55 point of view
    56 problem
    57 pure mathematics
    58 science
    59 scope
    60 simple example
    61 survey
    62 theory
    63 variation
    64 view
    65 schema:name Variations on seven points: An introduction to the scope and methods of coding theory and finite geometries
    66 schema:pagination 153-176
    67 schema:productId N2402e416a3e9464eb015e15f4306d265
    68 N860c2f63f750480b8326c80695d5e478
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296968
    70 https://doi.org/10.1007/bf02189613
    71 schema:sdDatePublished 2021-11-01T17:56
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher Ncb2990f51775406d9c3b5f9284b2947c
    74 schema:url https://doi.org/10.1007/bf02189613
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N01656136142141d19d82259c8ace4fcc rdf:first sg:person.015012354601.96
    79 rdf:rest N51832ab501a548fdb6c105e6f442c192
    80 N2402e416a3e9464eb015e15f4306d265 schema:name dimensions_id
    81 schema:value pub.1040296968
    82 rdf:type schema:PropertyValue
    83 N4e3cec1b4dac40b8a4693492d1d41ca0 schema:volumeNumber 25
    84 rdf:type schema:PublicationVolume
    85 N51832ab501a548fdb6c105e6f442c192 rdf:first sg:person.016273474670.91
    86 rdf:rest rdf:nil
    87 N860c2f63f750480b8326c80695d5e478 schema:name doi
    88 schema:value 10.1007/bf02189613
    89 rdf:type schema:PropertyValue
    90 Nc126a185bec84badbccb78cbcf2c2009 schema:issueNumber 1
    91 rdf:type schema:PublicationIssue
    92 Ncb2990f51775406d9c3b5f9284b2947c schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Pure Mathematics
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Applied Mathematics
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1136868 schema:issn 0001-9054
    104 1420-8903
    105 schema:name Aequationes mathematicae
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.015012354601.96 schema:affiliation grid-institutes:grid.8664.c
    109 schema:familyName Beth
    110 schema:givenName Thomas
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012354601.96
    112 rdf:type schema:Person
    113 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.8664.c
    114 schema:familyName Jungnickel
    115 schema:givenName Dieter
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    117 rdf:type schema:Person
    118 sg:pub.10.1007/978-3-642-64981-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019501154
    119 https://doi.org/10.1007/978-3-642-64981-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-66148-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051111469
    122 https://doi.org/10.1007/978-3-642-66148-8
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-642-67994-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026691400
    125 https://doi.org/10.1007/978-3-642-67994-0
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-67997-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015407999
    128 https://doi.org/10.1007/978-3-642-67997-1
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-662-20712-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047722932
    131 https://doi.org/10.1007/978-3-662-20712-3
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01110124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004718721
    134 https://doi.org/10.1007/bf01110124
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf01214135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036351425
    137 https://doi.org/10.1007/bf01214135
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf01456821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041934113
    140 https://doi.org/10.1007/bf01456821
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02948947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009538476
    143 https://doi.org/10.1007/bf02948947
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02948948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027200132
    146 https://doi.org/10.1007/bf02948948
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bfb0057319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045411150
    149 https://doi.org/10.1007/bfb0057319
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bfb0061260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003587687
    152 https://doi.org/10.1007/bfb0061260
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bfb0069907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036778583
    155 https://doi.org/10.1007/bfb0069907
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bfb0077135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049166468
    158 https://doi.org/10.1007/bfb0077135
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bfb0091016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034798025
    161 https://doi.org/10.1007/bfb0091016
    162 rdf:type schema:CreativeWork
    163 grid-institutes:grid.8664.c schema:alternateName Mathematisches Institut der Universität Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany
    164 schema:name Institut für Mathematische Maschinen und Datenverarbeitung I, Universität Erlangen, Martenstr. 3, D-8520, Erlangen, F.R. Germany
    165 Mathematisches Institut der Universität Giessen, Arndtstr. 2, D-6300, Giessen, F.R. Germany
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...